
Digital Signal Processing
文章平均质量分 89
数字信号处理
松下J27
一件小事,就是一件小事,但在一件小事上忠心,却是一件大事!
展开
-
数字信号处理 --- 二维离散余弦变换(python实战)
在我的前一篇文章的基础上,本文详细的介绍了二维DCT,并以图像的DCT举例。原创 2024-07-30 22:12:05 · 1913 阅读 · 0 评论 -
数字信号处理 --- 一维离散余弦变换(python实战)
本文详细介绍了基于python实现的一维离散余弦变换,是我个人的学习笔记。原创 2024-07-19 18:12:26 · 1096 阅读 · 0 评论 -
数字信号处理 --- 用离散傅里叶变换(循环卷积)实现线性卷积
用离散傅里叶变换(循环卷积)实现线性卷积原创 2022-08-09 21:16:54 · 3129 阅读 · 1 评论 -
数字信号处理 --- 信号分解基础
信号的分解 -------“重剑无锋,大巧不工” 信号的分解方式很多,大家最常用也最熟知的就是傅里叶变换了,然而有很多非常基础的分解方式往往不为人所知。他们的目的都是以某种方法去完美的分解并重建/还原信号,闲来无事,娓娓道来。1, 冲击分解(Impulse Decomposition) 冲击分解法对信号的采.........原创 2018-06-25 15:31:46 · 8409 阅读 · 4 评论 -
数字信号处理 --- 窗函数(window function)在信号处理当中的应用(二)
窗函数在信号处理中的应用 上次我们只是提到了对突然截断后的不连续信号进行傅里叶变换后,它的新频谱就会发生一系列的变化(泄漏),现逐一说明:1,振荡如果把截断后的信号进行傅里叶逆变换重新变回到频域,其结果并不是原来那种理想滤波器而会出现剧烈的抖动/振荡。Matlab代码:%CSDN:by J27 copyright!% RippleCH.........原创 2018-05-24 11:51:21 · 12132 阅读 · 8 评论 -
数字信号处理 --- 信号的采样和奇妙的混叠(Aliasing) 贰
混叠频率的计算 上次我们讲到如果混叠没能成功避免,那么混叠后的信号就会偷偷混入重建后的信号。那么这个经过伪装的“伪装信号”的频率是多少呢?他会出现在频谱中的哪里呢?这是可以通过精确计算得到的。 先从奥本海姆的信号与系统中的一幅插图说起,奥本海姆老师想要通过这幅图说明混叠,所绘制的波形为下图公式所示的余弦函数。 图中的ωo表示原始信号的频率,ωs表示采样............原创 2018-05-22 15:35:35 · 13167 阅读 · 10 评论 -
数字信号处理 --- 周期信号的三角函数表示 二(信号的合成和Gibbs现象)
用不同频率,相位,幅度的三角波合成信号 上回我们通过只改变正弦和余弦频率的方式,得到了冲击串信号和Sinc函数,这两个常见信号。这次我们不仅要改变各阶谐波的频率(k*fo)还要改变他们的幅值(ak,bk)和相位(φk),去合成更多的波。谐波信号的叠加(不同频率,不同幅度,不同相位): 刚才我们所合成的信号非常有限,因为我们只改变了三角函数中的频率,而没有改变幅度......原创 2018-05-21 15:59:41 · 12174 阅读 · 3 评论 -
数字信号处理 --- 周期信号的三角函数表示 一(三角函数的性质和三角波的合成)
三角函数的性质 一系列三角函数谐波(harmonic sinusoids)是傅里叶分析的基石,我们可以用这些不同频率的谐波构建各种各样的信号/波形。谐波(harmonics): 现在我们选择一个频率为f0的任意频率(arbitrary frequency)的正弦/余弦函数为基波(fundamental frequency)。则有一系列的基于该波的谐波(har......原创 2018-05-17 16:21:38 · 39520 阅读 · 4 评论 -
数字信号处理 --- 信号的采样和奇妙的混叠(Aliasing) 壹
信号的采样与混叠(时域) 在一定条件下,一个连续的时间信号完全可以用该信号在等时间间隔上的样本来表示,并且可以用这些样本的值把该信号完全恢复出来。这一非常重要的发现被称之为采样定理。 采样定理在连续时间信号(一个是连续的波形)和离散时间信号(一个是数组)之间架起了一座桥梁!!!(就好像微积分基本定理一样,把斜率和面积这两个毫不相干的概念紧密的联系在了一起。)一维信.........原创 2018-05-04 15:10:33 · 32709 阅读 · 13 评论 -
数字信号处理 --- 窗函数(window function)在信号处理当中的应用(一)
窗函数在信号处理中的应用好久没写博客了。。。哈哈。我喜欢DSP基础研究,上次好不容易在DSP中用到了一次窗函数感觉好棒,分享给大家希望能够对大家有一些些帮助吧。1,从两个重要极限到时域低通滤波器两个重要极限 数学里面常常会把两个非常重要而且非常常见的极限放在一起并称他们为两个重要极限。......原创 2018-04-25 10:30:15 · 6307 阅读 · 5 评论 -
数字信号处理 --- 傅氏变换(无公式,无英语)
傅氏變換是人類對自然界認知的一種方法,是認識事物背後本質的有趣方式,是眾多數學分析工具中的一顆璀璨的明星,是所有理工科學生都必不可少的一門課。大家要了解的不僅僅是課本上的複雜公式,更是應該跳出課本,學習傅氏變換的思想,并通過實際項目中的應用去了解她。辣椒炒肉辣椒炒肉是一道味道可口婦孺皆知的經典菜餚。那麼怎麼把複雜的傅里葉變換和辣椒炒肉緊密的聯係在一起呢。辣椒.........原创 2016-10-11 15:44:20 · 3621 阅读 · 2 评论