理解机器学习中常见参数估计方法

MLE算法

Maximum Likelihood Estimate (MLE) 中文名叫做极大似然估计。其核心思想是求解能够最大化拟合观测分布 D D D 的参数 θ ^ \hat\theta θ^
θ ^ = a r g m a x ( P ( D ) ∣ θ ) \hat\theta = argmax(P(D)|\theta) θ^=argmax(P(D)θ)
例如,假设抛硬币正面朝上的概率值 P ( u p ) = θ P(up) = \theta P(up)=θ, 反面朝上的概率值为 P ( d o w n ) = 1 − θ P(down) = 1 - \theta P(down)=1θ 。假设每次抛硬币的过程是条件独立的,且符合(0-1)分布。用 α u \alpha_{u} αu   α d \ \alpha_d  αd 分别表示抛了若干次硬币之后观察到的正面朝上和反面朝上的次数。则
P ( D ∣ θ ) = P ( α u , α d ∣ θ ) = θ α u ( 1 − θ ) α d P(D|\theta) = P(\alpha_u, \alpha_d|\theta) = \theta^{\alpha_u} (1 - \theta)^{\alpha_d} P(Dθ)=P(αu,αdθ)=θαu(1θ)αd

利用MLE算法求解上述表达式:
θ ^ M L E = a r g m a x ( P ( D ) ∣ θ ) θ ^ M L E = a r g m a x ( l n ( P ( D ∣ θ ) ) ) θ ^ M L E = a r g m a x ( l n ( θ α u ( 1 − θ ) α d ) ) \hat\theta_{MLE} = argmax(P(D)|\theta) \\ \hat\theta_{MLE} = argmax(ln(P(D|\theta))) \\ \hat\theta_{MLE} = argmax(ln(\theta^{\alpha_{u}}(1-\theta)^{\alpha_d})) θ^MLE=argmax(P(D)θ)θ^MLE=argmax(ln(P(Dθ)))θ^MLE=argmax(ln(θαu(1θ)αd))

令其导数为0,求解极值点:
d d θ l n ( θ α u ( 1 − θ ) α d ) = α u 1 θ − α d 1 1 − θ = 0 \frac{d}{d\theta }ln(\theta^{\alpha_{u}}(1-\theta)^{\alpha_d}) = \alpha_u \frac{1}{\theta} - \alpha_d \frac{1}{1-\theta} = 0 dθdln(θαu(1θ)αd)=αuθ1αd1θ1=0

解得 θ ^ M L E = α u α u + α d \hat\theta_{MLE} = \frac{\alpha_u}{\alpha_u + \alpha_d} θ^MLE=αu+αdαu 这符合我们的认知,概率值近似等于频率。

MAP 算法

Maximum a Posterior (MAP) 中文名叫最大后验概率估计。其核心思想是在极大似然估计(MLE)算法的基础上,假设参数 θ \theta θ符合某先验分布 g ( θ ) g(\theta) g(θ)则根据贝叶斯公式:
P ( θ ∣ D ) = P ( D ∣ θ ) P ( θ ) P ( D ) P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} P(θD)=P(D)P(Dθ)P(θ)

由于P(D) 是已知的观测分布可以忽略,因此 P ( θ ∣ D ) ∝ P ( D ∣ θ ) P ( θ ) P(\theta|D) \propto P(D|\theta)P(\theta) P(θD)P(Dθ)P(θ)(这里的 ∝ \propto 表示“正比于”),因此MAP的求解过程如下:
θ ^ M A P = a r g m a x ( P ( D ) ∣ θ ) P ( θ ) = θ ^ M L E   g ( θ ) \hat \theta_{MAP} = argmax(P(D)|\theta)P(\theta) = \hat \theta_{MLE} \space g(\theta) θ^MAP=argmax(P(D)θ)P(θ)=θ^MLE g(θ)

当参数 θ \theta θ的分布为常数分布时,最大后验概率估计等价于极大似然估计,即 θ ^ M A P = θ ^ M L E \hat \theta_{MAP} = \hat \theta_{MLE} θ^MAP=θ^MLE

EM 算法

Expectation-maximization algorithm (EM) 中文名叫期望最大化算法,其核心思想是当求解MLE算法或MAP算法的过程中依赖于某些不可观测的隐变量 Z Z Z(不同于常规的可观测数据分布D,现在待计算的分布中有一些数据是不可观测的(例如缺失值),就需要使用EM算法)。则通过以下步骤进行参数估计:

  1. 初始化分布参数 ( θ \theta θ)
  2. E步骤: 根据参数的假设值,给出未知变量(隐变量)的期望估计,应用于缺失值。
  3. M步骤: 根据未知变量(隐变量)的估计值,给出当前的参数的极大似然估计 θ ^ M L E \hat \theta_{MLE} θ^MLE

重复2,3过程,直到收敛。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

daimashiren

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值