监督学习方法与无监督学习方法总结

本文概述了监督学习的10种方法,如线性回归和决策树,以及无监督学习的八种核心技术,如聚类、矩阵分解和概率模型。介绍了SVD与NMF的区别,以及EM算法和MCMC在隐变量学习中的应用。涵盖了从聚类到深度学习的广泛领域。
摘要由CSDN通过智能技术生成

(一)监督学习
10种监督学习方法特点的概括汇总如下表:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(二)无监督学习
八种常用的统计机器学习方法,即聚类方法(包括层次聚类与k均值聚类)、奇异值分解(SVD)、主成分分析(PCA)、潜在语义分析(LSA)、概率潜在语义分析(PLSA)、马尔可夫链蒙特卡罗法(MCMC)、潜在狄利克雷分配(LDA)、PageRank算法 还有另外三种常用的统计机器学习方法,即非负矩阵分解(NMF)、变分推理、幂法 这些方法常用于无监督学习的聚类、降维、话题分析以及图分析
矩阵分解基于不同假设:SVD基于正交假设,即分解得到的左右矩阵是正交矩阵,中间矩阵是非负对角矩阵;非负矩阵分解基于非负假设,即分解得到的左右矩阵皆是非负矩阵。 含有隐变量的概率模型的学习有两种方法:迭代计算方法、随机抽样方法。EM算法和变分推理(包括变分EM算法)属于迭代计算方法,吉布斯抽样属于随机抽样方法。

机器学习方法之间的关系如下图所示:
在这里插入图片描述

无监督学习方法的特点如下表:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值