A2A vs MCP vs AG-UI

引言

  • • 随着AI代理(Agent)技术的快速发展,不同场景下的通信协议标准化成为行业关键需求。本文旨在分析AG-UI协议的特点及其与MCP、A2A协议的关系。
  • • AG-UI作为一种新兴的开源协议,专注于解决AI代理与前端应用之间的通信问题,与现有的MCP(Model Context Protocol)和A2A(Agent-to-Agent)协议形成互补关系,共同构建完整的AI代理通信生态系统。

第1部分:AG-UI协议概述

  • • 定义与目标:AG-UI(Agent-User Interaction Protocol)是一个开放、轻量级、基于事件的协议,旨在标准化AI代理与前端应用之间的通信方式。正如官方文档所述,AG-UI"标准化了前端应用如何通过开放协议连接到AI代理",可视为"AI驱动系统的通用翻译器"。
  • • 核心技术特性
    • • 实时交互:支持实时事件流,确保用户与代理状态同步,提供流畅的交互体验
    • • 人类参与协作:允许用户介入AI决策过程,适合需要人工确认或指导的复杂工作流
    • • 传输无关性:支持SSE、WebSocket、webhook等多种传输方式,适应不同应用场景
    • • 轻量级设计:最小化依赖,易于集成,适合从简单演示到企业级应用的各种规模项目
    • • 标准化事件:定义16种事件类型(如TEXT_MESSAGE_CONTENT、TOOL_CALL_START),简化开发
  • • 工作原理:AG-UI通过事件驱动架构实现代理与前端的通信。如Reddit讨论中所述:"魔法发生在5个简单步骤中:1.应用发送请求给代理;2.打开单一事件流连接;3.代理在工作时发送轻量级事件包;4.每个事件实时流向前端;5.应用随着每个新发展即时更新。"

第2部分:AG-UI与MCP、A2A的对比

  • • 功能定位对比
    • • MCP(Model Context Protocol):专注于连接AI代理与外部数据源和工具(如GitHub、Notion等)
    • • A2A(Agent-to-Agent Protocol):实现不同AI代理之间的通信和协作
    • • AG-UI:连接后端AI代理与前端用户界面,实现实时交互
  • • 技术实现对比
    • • MCP:通过客户端-服务器架构,提供预构建的集成,简化AI模型与外部系统的交互
    • • A2A:通过JSON-RPC 2.0 over HTTP(S)实现,支持任务委托、信息交换和安全协作
    • • AG-UI:基于事件流(如SSE、WebSocket)实现实时通信,定义16种标准事件类型
  • • 应用场景对比
    • • MCP:适用于需要访问外部数据和工具的场景,如数据检索、API调用等
    • • A2A:适用于多个代理需要协作完成复杂任务的场景,如任务分配、信息共享等
    • • AG-UI:适用于需要实时用户交互的场景,如聊天界面、协作编辑等

第3部分:三大协议的协作关系

  • • 互补性协作:这三个协议并非竞争关系,而是形成互补的生态系统。如微信公众号"机智流"文章所述:"AG-UI的发展是迭代的,先有MCP解决模块化组件的结构化通信,再有A2A实现专业化Agent之间的编排,AG-UI则是首个明确连接后端Agent与前端用户界面的协议。"
  • • 完整通信链路:三个协议共同构建了完整的AI代理通信链路:
    • • MCP处理代理与外部工具/数据的通信
    • • A2A处理代理之间的通信
    • • AG-UI处理代理与用户界面的通信
  • • 实际应用场景:在客户支持场景中,一个代理可能通过MCP访问客户历史记录,通过A2A与技术支持代理协作解决问题,最后通过AG-UI在聊天界面实时更新用户。正如X平台上@akshay_pachaar所强调的,AG-UI"完成了协议栈"。

第4部分:AG-UI的生态系统与集成

  • • 框架集成:AG-UI已与多个主流AI框架实现"开箱即用"的集成,包括LangChain、Mastra、CrewAI和AG2,未来将有更多合作伙伴加入。
  • • 开发者工具:AG-UI提供TypeScript和Python SDK,简化集成过程。开发者可以使用CopilotKit的组件快速构建React前端,或通过快速入门指南探索交互式playground。
  • • 社区发展:AG-UI已经组建工作组,定期举行会议,推动协议的发展和完善。如Hacker News讨论中提到:"我们将在本周五召开第一个工作组会议,以帮助扩展和引导该协议的方向。"

结论

  • • AG-UI作为一个新兴的开源协议,填补了AI代理与前端应用之间通信的空白,与MCP和A2A形成互补关系,共同构建完整的AI代理通信生态系统。
  • • 三个协议各有侧重点:MCP连接代理与外部工具/数据,A2A实现代理间协作,AG-UI连接代理与用户界面。
  • • 随着AI代理技术的不断发展,这三个协议的协作将为开发者提供更加灵活、高效的AI应用开发环境,推动AI代理技术在各行业的广泛应用。
  • • 开发者可以通过官方文档、GitHub仓库、演示应用和社区支持等资源,快速上手AG-UI,构建实时、交互式的AI应用。


A2A vs MCP vs AG-UIhttps://a2aprotocol.ai/blog/a2a-mcp-ag-ui

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
### 如何使用Visio绘制数据库ER图 #### 准备工作 确保已成功安装并启动Microsoft Visio版本2013或更高版[^1]。打开程序后,选择“文件”,接着点击“新建”。在搜索框内输入“实体关系图”或者英文名称“Entity Relationship Diagram”。 #### 创建新图表 当选择了合适的模板之后,点击进入编辑界面。此时可以看到左侧工具栏已经加载好了用于构建ER图所需的各类形状和连接线。 #### 添加实体对象 通过拖拽方式从左侧菜单中的“实体(Entity)”分类下选取矩形代表表(Table),将其放置于画布上作为实体元素。对于每一个新增加的实体,在属性窗口为其命名以便识别不同表格所对应的现实世界事物[^2]。 #### 定义属性字段 双击刚创建好的实体图标可开启其内部结构视图模式;在此处继续添加列(Column)即为该实体拥有的各个特性(Attribute)。注意设置主键(PK, Primary Key)以及其他约束条件(Unique, Not Null etc.)以满足实际需求。 #### 关联实体间的关系 利用线条(Link/Relationship Line)链接两个相关联的对象之间形成一对多、一对一或多对多等形式的关系连线。在线条两端会出现箭头指示方向性和基数(Cardinality)。 #### 自动调整布局 完成初步设计草稿后,如果觉得整体排列不够美观整齐,则可以尝试运用Visio内置的自动排版功能。“设计”选项卡下的“重新定位形状(Rearrange Shapes)”命令可以帮助快速优化视觉效果。 ```python # Python代码仅作示意用途,并非真实实现逻辑 def draw_er_diagram(): # 初始化绘图环境 diagram = initialize_visio() # 描述操作流程而非具体编程语句 add_entity(diagram, 'Customer') define_attributes(diagram['Customer'], ['ID', 'Name']) set_primary_key(diagram['Customer']['Attributes'][0]) add_entity(diagram, 'Order') link_entities(diagram, 'Customer', 'Order', relationship='one-to-many') draw_er_diagram() ``` #### 保存与导出作品 最后不要忘记定期保存进度至本地磁盘以防意外丢失数据。另外还可以考虑将最终成果转换成图片(JPEG/PNG)或是PDF文档分享给团队成员审阅讨论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值