二分 + 多重匹配 -- POJ - 2289 Jamiemeigeren‘s Contact Groups

POJ - 2289 Jamie’s Contact Groups

题意:
有n个人,分为m组,每个可以被归到一些组里,但最终每个人只能归到一个组,求人数最多组的人数最少是多少。

思路:
二分人数,多重匹配判断。
多重匹配:右边的组可以匹配多个左边的人。当每组的人数不够mid的话直接匹配就行。 若已经达到mid,那么看是是否还能寻找到增广路,若能找到就进行替换。

code:

#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
const int maxn = 1e3 + 5;

struct edge{
	int u, v, next;
}g[maxn * maxn * 2];

struct node{
	int len, mul[maxn];
} match[maxn];

int head[maxn], cnt;
bool vis[maxn];

void init(int n) {
	cnt = 0;
	for(int i = 1; i <= n; i++){
		head[i] = -1;
	}
}

void add(int u, int v){
	g[cnt].u = u;
	g[cnt].v = v;
	g[cnt].next = head[u];
	head[u] = cnt++;
}

bool dfs(int u, int mid){    //多重匹配
	for(int i = head[u]; i != -1; i = g[i].next) {
		int v = g[i].v;
		
		if(vis[v]) continue;
		vis[v] = true;
		
		if(match[v].len < mid){
			
			match[v].mul[match[v].len++] = u;
			return true;
		}
		else {
			for(int j = 0; j < match[v].len; j++){
				 
				if(dfs(match[v].mul[j], mid)){
					match[v].mul[j] = u;
					return true;
				}
			}
		}
	}
	return false;
}

bool solve(int n, int m, int mid){
	for(int i = 0; i < m; i++) match[i].len = 0;
	for(int i = 1; i <= n; i++){
		for(int j = 0; j < m; j++) vis[j] = false;
		if(!dfs(i, mid)) return false;
	}
	return true;
}


int main(){
   int n, m;
   char s[20];
   while(scanf("%d%d", &n, &m), n + m) {
   	
   	    init(n);
   	    
   	    for(int i = 1; i <= n; i++){
   	  	   scanf("%s", s);
   	  	   int u = i, v;
   	  	   char ch;
   	  	   while(scanf("%c", &ch), ch != '\n'){
   	  	   	   scanf("%d", &v);
   	  	   	   add(u, v);
			}
		}
	
		int l = 0, r = n;
		while(l < r) {    //二分人数
			int mid = (l + r) / 2;
			if(solve(n, m, mid)) r = mid;
			else l = mid + 1;
		}		
   	    
   	    printf("%d\n", l);
   }	
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值