SVD在推荐系统中的应用(资源汇总)

本文汇总了多个关于SVD在推荐系统中应用的优质资源,包括SVD模型的原理、变形、实际应用以及算法推导。通过实例分析和详细解释,帮助读者深入理解SVD如何改善推荐效果,以及如何实现和优化SVD模型。
摘要由CSDN通过智能技术生成

关于SVD在推荐系统中的应用一些比较好的资源

博文[1]给出了一个具体的实例分析,能够很好的理解SVD在推荐系统中应用对推荐结果所起的作用。

博文[2]从强调SVD应用到推荐系统领域中的思想出发,详细介绍了SVD模型的思想和原理,并从改进和实际应用思想的角度结合图形分析介绍了几种SVD模型的变形,能够很好的理解SVD模型及各种变形。

博文[3]主要介绍了矩阵分解在推荐系统中应用的思想,并针对各个变形举出小的实例进行分析,很容易理解。

博文[4]一种SVD学习笔记的形式,针对每一项笔记都有详细的资源出处,便于学习。

博文[5]主要是对文章[6]的一个解读和翻译。

博文[7]理解SVD的一个很好地分析,与博文[1]类似。

博文[8] SVD在推荐系统中的应用详解以及算法推导,详细讲解了SVD的原来,以及梯度下降、过拟合,对算法理解很有帮助,文中还提供相关代码。

博文[9]介绍了SVD及其变形,并对添加bias的SVD算法进行实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值