深度学习
文章平均质量分 80
AI博士小张
博士在读,分享学习,兼职技术答疑,欢迎交流!
展开
-
基于Python+Djiango的医院诊疗挂号系统设计【完整代码+可远程安装部署】
医院挂号系统是现代医疗服务的重要组成部分,它能够为患者和医院提供便捷的挂号服务,提高医疗资源的利用效率。本文基于Python编程语言和Django框架,设计并实现了一套完整的医院挂号系统。该系统具有用户注册登录、医生排班、科室管理、挂号预约、就诊记录等功能,能够有效地管理医院的挂号业务,提升医疗服务的质量和效率。关键词:Python、Django、医院挂号系统、用户管理、医生排班、挂号预约本文基于Python编程语言和Django框架,设计并实现了一套完整的医院挂号系统。原创 2024-04-18 19:26:48 · 1028 阅读 · 5 评论 -
基于深度学习/YOLOv8的植物叶片病害识别系统【附源码+可远程安装部署】
本系统基于深度学习/YOLOv8算法,实现了对植物叶片病害的自动、快速、准确识别。未来,我们将继续优化模型结构和算法性能,提高病害识别的准确率和效率。同时,我们还将探索更多应用场景,将系统应用于更多种类的农作物和病害类型中,为农业生产提供更加全面、高效的病害防治解决方案。原创 2024-04-18 19:15:23 · 1543 阅读 · 0 评论 -
基于深度学习的新闻文本分类研究【完整代码+可远程安装部署】
随着信息时代的到来,网络上涌现出大量的新闻文本,其数量庞大且种类繁多。如何高效地对这些新闻文本进行分类成为了一项重要的研究课题。本文基于深度学习技术,针对新闻文本分类问题展开研究。首先,我们对不同领域的新闻文本数据进行收集和整理,构建了一个丰富多样的数据集。然后,我们设计并实现了一个基于深度学习的文本分类模型,采用了卷积神经网络(CNN)和循环神经网络(RNN)相结合的网络架构,以提高分类性能。在模型训练过程中,我们采用了有效的数据增强和正则化技术,以及适当的损失函数和优化器进行模型的训练和优化。原创 2024-04-18 18:02:07 · 1276 阅读 · 0 评论 -
基于深度学习/YOLOv8的植物叶片病害识别系统【附源码+可远程安装部署】
本系统基于深度学习/YOLOv8算法,实现了对植物叶片病害的自动、快速、准确识别。未来,我们将继续优化模型结构和算法性能,提高病害识别的准确率和效率。同时,我们还将探索更多应用场景,将系统应用于更多种类的农作物和病害类型中,为农业生产提供更加全面、高效的病害防治解决方案。原创 2024-04-15 22:48:52 · 2336 阅读 · 1 评论 -
基于YOLOv8/YOLOv5的人脸表情识别系统【附源码+可远程安装部署】
同时,随着深度学习技术的不断发展,我们可以进一步优化模型的结构和训练过程,提高系统的性能。通过预处理输入图像,将其调整为模型所需的尺寸,然后利用训练好的模型进行前向传播,得到人脸的检测结果。同时,随着深度学习技术的普及和计算机性能的提升,越来越多的企业和研究机构开始关注人脸表情识别技术的实际应用。这些算法通过优化模型结构和训练策略,提高了人脸检测的准确性和实时性,为人脸表情识别提供了有力的技术支持。其中,基于深度学习的目标检测算法,如YOLOv8和YOLOv5,在人脸表情识别领域展现出了巨大的潜力。原创 2024-04-15 22:47:47 · 2270 阅读 · 4 评论 -
基于YOLOv8的番茄/草莓成熟度检测系统【附源码+可远程安装部署】
YOLOv8是一种实时目标检测算法,其基本原理是通过深度卷积神经网络对输入图像进行特征提取和分类回归。该算法采用了多种优化技术,包括改进的特征提取网络、增强的数据增强方法以及更高效的训练策略,从而实现了更高的检测精度和更快的检测速度。本研究基于YOLOv8算法构建了一个番茄/草莓成熟度检测系统,实现了对果实成熟度的快速、准确检测。通过系统设计与实现、实验结果与分析以及系统应用与测试等方面的研究,验证了系统的有效性和实用性。原创 2024-04-15 22:46:00 · 1405 阅读 · 1 评论 -
基于YOLOv8的钢材表面缺陷检测系统【附源码+可远程安装部署】
已有研究表明,YOLOv8在钢材表面缺陷检测中取得了良好的效果,具有广阔的应用前景。展望钢材表面缺陷检测领域的未来发展趋势,如深度学习技术的不断进步、新型传感器和成像技术的发展等,为系统升级和功能扩展提供新的可能。强调钢材表面缺陷检测在工业生产中的重要性,以及基于YOLOv8等先进算法的检测系统在提高产品质量、降低生产成本方面的巨大潜力。不同缺陷类型具有不同的特征和表现形式,对检测算法提出了不同的要求。总结基于YOLOv8的钢材表面缺陷检测系统的设计与实现过程,强调其在实时性、准确性和易用性等方面的优势。原创 2024-04-15 22:44:57 · 1259 阅读 · 0 评论 -
基于深度学习的自动驾驶目标检测系统【附源码+可远程安装部署】
随着人工智能技术的快速发展,自动驾驶技术已成为当今研究的热点。目标检测作为自动驾驶技术的核心部分,对于确保行车安全和提升驾驶体验至关重要。本文提出了一种基于深度学习的自动驾驶目标检测系统,旨在提高目标检测的准确性和实时性,为自动驾驶技术的发展提供有力支持。关键词:深度学习;自动驾驶;目标检测;卷积神经网络。原创 2024-04-15 22:43:51 · 1006 阅读 · 0 评论 -
基于YOLOv8的肿瘤图像检测系统【附源码+可远程安装部署】
YOLOv8是一种实时目标检测算法,通过对输入图像进行特征提取和分类回归,实现对目标的快速准确检测。该算法采用深度学习技术,通过构建深度神经网络模型,学习目标的特征表示和位置信息。在训练过程中,模型通过不断优化参数,提高对目标的识别能力。总结本研究的主要内容和成果,强调基于YOLOv8的肿瘤图像检测系统的优势和应用价值。原创 2024-04-15 22:42:55 · 1083 阅读 · 1 评论 -
基于YOLOv8的稻田虫害检测系统【附源码+可远程安装部署】
本研究旨在利用YOLOv8算法开发一款高效、准确的稻田虫害检测系统。该系统能够对稻田中的害虫进行实时检测与识别,为农业生产者提供及时、准确的虫害信息,以便采取有效的防控措施。本文首先介绍了YOLOv8算法的基本原理和优势,然后详细阐述了稻田虫害检测系统的设计与实现过程,最后通过实验验证了系统的性能。原创 2024-04-15 22:41:54 · 1395 阅读 · 1 评论 -
基于深度学习的口罩识别系统【附源码+可远程安装部署】
随着全球公共卫生事件的频发,口罩作为重要的防护工具,其佩戴情况成为了公共安全和健康管理的关键指标。因此,开发一种高效、准确的口罩识别系统具有重要意义。本文提出了一种基于深度学习的口罩识别系统,通过对大量图像数据进行训练,实现了对口罩佩戴情况的自动识别和检测。实验结果表明,该系统具有较高的准确率和鲁棒性,为公共场所的口罩佩戴管理提供了有力支持。关键词:深度学习;口罩识别;卷积神经网络;图像检测深度学习是机器学习领域的一个重要分支,通过模拟人脑神经网络的工作方式,实现对数据的自动学习和特征提取。原创 2024-04-15 22:40:19 · 584 阅读 · 0 评论 -
基于YOLOv8的花卉识别系统【附源码+可远程安装部署】
随着深度学习技术的快速发展,目标检测与识别领域取得了显著进步。本文旨在研究基于YOLOv8算法的花卉识别系统,通过构建高效、准确的花卉识别模型,实现对多种花卉的自动检测与识别。文章首先介绍了YOLOv8算法的基本原理和优势,然后详细阐述了花卉识别系统的设计与实现过程,包括数据集构建、模型训练、测试与优化等方面。最后,通过实验验证了系统的性能,并讨论了其在实际应用中的潜力和挑战。关键词:YOLOv8;花卉识别;深度学习;目标检测;图像识别。原创 2024-04-15 22:39:16 · 1441 阅读 · 1 评论 -
基于YOLOv8的苹果树叶病害检测研究(附源码+数据集+可部署安装)
基于YOLOv8的苹果树叶病害检测研究是一个非常具有实际应用价值的课题,它结合了深度学习技术中的最新进展,尤其是在目标检测领域。YOLO(You Only Look Once)是一种非常流行的目标检测算法,它以其高效和准确性而闻名。YOLOv8作为这一系列算法的最新版本,相较于其前身在准确性、速度和模型大小方面都有所改进。以下是基于YOLOv8进行苹果树叶病害检测研究的一些基本步骤和考虑因素。软件主要功能。原创 2024-04-09 12:37:26 · 2692 阅读 · 4 评论 -
基于yolov8的无人机检测系统【源码+数据集+可部署安装】
本文深入研究了基于YOLOv8/v7/v6/v5等深度学习模型的无人机目标检测技术,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实时摄像头进行无人机目标检测,可上传不同训练模型(YOLOv8/v7/v6/v5)进行推理预测,界面可方便修改。本文附带了完整的网页设计、深度学习模型代码和训练数据集的下载链接。原创 2024-04-09 12:15:35 · 3894 阅读 · 5 评论 -
基于yolov8的月饼数据检测【含源码和数据集】
答:为了让计算机学会正确地识别物体,我们需要提供大量的标注数据集,这些数集包含了图像或视频中物体的位置和类别信标注数据集的作用在干,它可以帮助计算机学习到如何识别不同种类的物体,并且能够正确地定位它们的位置。模型训练阶段的原理和预测步骤一致,都可以直接通过命令行搞定,关于这部分参数依然在ultralytics/yolo/cfg/default,yanl中,但我们要训练自己的数据集时记得在 data 参数后指定我们自己的数据集 yamL 文件路径哦。需要注意的是,网络上的图像可能受到版权保护。原创 2024-04-07 00:00:28 · 509 阅读 · 0 评论 -
毕业设计-基于CNN的交通标识识别与分类系统设计与实现(附源码+可远程部署安装)
CNN是一种人工神经网络,CNN的结构可以分为3层:卷积层(Convolutional Layer) - 主要作用是提取特征。池化层(Max Pooling Layer) - 主要作用是下采样(downsampling),却不会损坏识别结果。全连接层(Fully Connected Layer) - 主要作用是分类。我们可以拿人类来做类比,比如你现在看到上图中的小鸟,人类如何识别它就是鸟的呢?首先你判断鸟的嘴是尖的,全身有羽毛和翅膀,有尾巴。然后通过这些联系起来判断这是一只鸟。原创 2024-03-04 13:46:48 · 497 阅读 · 1 评论 -
毕业设计-基于ResNet的植物图像文字描述系统设计与实现(附源码+可远程调试及安装)
ResNet 网络是在 2015年 由微软实验室中的何凯明等几位大神提出,斩获当年ImageNet竞赛中分类任务第一名,目标检测第一名。获得COCO数据集中目标检测第一名,图像分割第一名。原创 2024-03-04 13:44:56 · 253 阅读 · 0 评论 -
毕业设计-基于YOLOv8的车辆目标识别系统设计与实现(远程部署及安装+附源码)
CSPNe是一种增强CNN学习能力的跨阶段局部网络。CSPNet全称是Cross Stage Partial Network,主要从网络结构设计的角度来解决以往工作在推理过程中需要很大计算量的问题,其能够在降低20%计算量的情况下保持甚至提高CNN的能力。作者认为推理计算过高的问题是由于网络优化中的梯度信息重复导致的,因此CSPNet通过将梯度的变化从头到尾地集成到特征图中,在减少了计算量的同时可以保证准确率。原创 2024-03-04 13:42:44 · 556 阅读 · 0 评论 -
毕业设计-基于迁移学习的农作物识别系统与实现
迁移学习(Transfer Learning)是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。原创 2024-03-04 13:38:19 · 362 阅读 · 0 评论 -
毕业设计-基于YOLOv8的玉米叶片病害识别系统设计与实现(附源码+可远程部署及安装)
YOLOv5是Glenn Jocher等人研发,它是Ultralytics公司的开源项目。YOLOv5根据参数量分为了n、s、m、l、x五种类型,其参数量依次上升,当然了其效果也是越来越好。从2020年6月发布至2022年11月已经更新了7个大版本,在v7版本中还添加了语义分割的功能。本文以YOLOv5_v6为媒介,对YOLOv5进行学习。原创 2024-03-04 13:35:53 · 682 阅读 · 0 评论 -
毕业设计-基于slowFast的视频内容分析系统设计与实现
本文提出了用于视频识别的SlowFast网络。我们的模型包括:(1)一条slow pathway,以低帧速率运行,以捕获空间语义;(2)一条fast pathway,以高帧速率运行,以精细的时间分辨率捕获运动。fast pathway可以通过减少通道容量而变得非常轻量,但可以学习有用的时间信息用于视频识别。模型在视频动作分类和检测方面都取得了较好的性能,我们的slowfast概念针对性能有很大的改进。并在Kinetics,Charades和AVA等基准上取得了最好的效果。2、介绍。原创 2024-03-04 13:34:23 · 498 阅读 · 0 评论 -
毕业设计-基于DETR的储粮害虫检测系统设计与实现
DETR,全称为Detection Transformer,是Facebook在ECCV2020上提出的基于Transformer的端到端目标检测网络最大的特点就是:不需要预定义的先验anchor,也不需要NMS的后处理策略,就可以实现端到端的目标检测。但是,DETR大目标检测上性能是最好的,而小目标上稍差,而且基于match的loss导致学习很难收敛(即难以学习到最优的情况)。DETR的总体框架如下,先通过CNN提取图像的特征;原创 2024-03-04 13:33:15 · 376 阅读 · 0 评论 -
毕业设计-基于YOLO v8-DeepSort的行人轨迹跟踪系统的设计与实现(附源码+可远程部署安装)
YOLO模型训练分为两步:1)预训练。使用ImageNet1000类数据训练YOLO网络的前20个卷积层+1个average池化层+1个全连接层,后面的池化层和全连接层是预训练加的。预训练图像的分辨率resize为224x224。2) 用步骤1)得到的前20个卷积层网络参数来初始化YOLO模型前20个卷积层的网络参数,后面的4层就training from scratch,然后用VOC 20类标注数据进行YOLO模型训练。原创 2024-03-04 13:30:02 · 421 阅读 · 1 评论 -
毕业设计-基于YOLOv5的车辆目标识别系统设计与实现
YOLO将物体检测作为回归问题求解。基于一个单独的end-to-end网络,完成从原始图像的输入到物体位置和类别的输出。从网络设计上,YOLO与two steps的目标检测方法如RCNN、Fast RCNN和Faster RCNN的区别如下:YOLO训练和检测均是在一个单独网络中进行。YOLO没有显示地求取region proposal的过程。原创 2024-03-04 13:27:51 · 586 阅读 · 1 评论 -
毕业设计-基于ResNet网络的中草药识别系统设计与实现(附源码+可远程部署安装)
CNN(Convolution Neural Network,卷积神经网络)主要用于图像分类问题但CNN不仅可以处理图像,还可以处理音频、文本、游戏等,只要数据能变成图像格式就可以若数据把两列互换,信息量不受影响,则表示该类数据不能用CNN处理结构:卷积层 —> 池化层 —> 卷积层 —> 池化层 —> 全连接层 —> 输出层【卷积、池化可以堆积很多层】卷积层(Convolution):提取图像的底层特征,将原图中符合卷积核特征的特征提取出来(卷积核特征是由网络自己学习出来的)原创 2024-03-04 13:25:54 · 573 阅读 · 2 评论 -
毕业设计-基于集成学习的疾病诊断系统设计与实现(附源码+可远程部署安装)
本文主要简单介绍了集成学习的基本概念,优缺点,应用场景,实现方法,以及bagging, boosting, 堆叠法三种集成学习的建模过程,示例和模型参数等。原创 2024-03-04 13:21:12 · 638 阅读 · 1 评论 -
毕业设计-基于RNN的音乐生成系统设计与实现(附源码+可远程部署及安装)
细想BP算法,CNN(卷积神经网络)我们会发现, 他们的输出都是只考虑前一个输入的影响而不考虑其它时刻输入的影响, 比如简单的猫,狗,手写数字等单个物体的识别具有较好的效果. 但是, 对于一些与时间先后有关的, 比如视频的下一时刻的预测,文档前后文内容的预测等, 这些算法的表现就不尽如人意了.因此, RNN就应运而生了.具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。原创 2024-03-04 13:18:00 · 267 阅读 · 1 评论 -
毕业设计-基于Transformer的机器翻译系统设计与实现(附源码+可远程安装部署)
在训练阶段,解码器可以通过自注意力机制和编码器-解码器注意力机制来对输入序列进行有效的信息提取和生成。为此,Transformer引入了位置编码,它是一个与输入向量维度相同的矩阵,用于表示序列中每个元素的位置信息。它在处理长序列数据时表现出色,并且相比于传统的循环神经网络(RNN)模型,能够并行计算,从而提高了训练和推理的效率。通过自注意力机制、多头注意力机制和编码器-解码器结构,Transformer能够有效地捕捉序列中的长距离依赖关系,并在许多自然语言处理任务中取得了出色的性能。原创 2024-03-04 13:15:04 · 773 阅读 · 1 评论 -
毕业设计-基于CNN的无人超市人脸识别系统的设计与实现(附源码+可远程部署安装)
1x1的卷积层是特殊的卷积层卷积核的高和宽都等于1,意味着它不会识别空间信息,因为他每次只看一个空间像素所以不会去识别通道中的空间信息但是我们经常用它来合并通道它输出的值等价于将对应的输入位置上的不同通道上的值做加权和1x1卷积核的作用就是去融合不同通道的信息可以认为是不做空间的匹配,只是在输入层直接做输入通道和输出通道的融合,等价于将整个输入拉成一个向量,通道数等于feature的数量1x1的卷积层。原创 2024-03-04 13:12:27 · 319 阅读 · 1 评论 -
毕业设计-基于YOIO模型的麦粒品质分析系统设计与开发(附源码+可远程部署安装)
作者AlexeyAB大神!YOLOv4 拥有43.5%mAP+65FPS ,达到了精度速度最优平衡,作者团队:Alexey Bochkovskiy&中国台湾中央研究院在讲YOLOv4之前,先介绍一下两个包:Bag of Freebies(免费包)和Bag-of-Specials(特赠包)Bag of Freebies:指的是那些不增加模型复杂度,也不增加推理的计算量的训练方法技巧,来提高模型的准确度。原创 2024-03-04 13:10:24 · 505 阅读 · 1 评论 -
毕业设计-基于深度学习的推荐系统实战(附源码+可远程安装部署)
一句话概括,推荐给你感兴趣的视频,商品等,让你入迷。原创 2024-03-03 18:09:14 · 1539 阅读 · 0 评论 -
毕业设计-基于yolo实现人物跟踪实时监测(附源码+可远程安装部署)
这种损失会存在一些问题,具体的问题如下图所示,(1)如状态1所示,当预测框和GT框不相交时,即IOU=0,此时无法反映两个框之间的距离,此时该 损失函数不可导,即IOU_Loss无法优化两个框不相交的情况。CIOU_loss-目标检测任务的损失函数一般由分类损失函数和回归损失函数两部分构成,回归损失函数的发展过程主要包括:最原始的Smooth L1 Loss函数、2016年提出的IoU Loss、2019年提出的GIoU Loss、2020年提出的DIoU Loss和最新的CIoU Loss函数。原创 2024-03-01 21:55:39 · 1107 阅读 · 1 评论 -
[毕业设计]2023-2024年最新最全人工智能专业毕设选题精选推荐汇总
是否仍在寻找合适的数据集?是否感到繁琐的代码让你望而却步?是否正为毕业设计而感到困扰?大四是整个大学期间最为繁忙的时光,需要同时应对备考或实习的压力,为毕业后的就业或升学做充分准备。在这一阶段,毕业设计成为一项耗费大量精力的任务。近年来,各大学对毕设项目的要求不断提高,其中一些课题甚至达到了研究生级别的难度,对本科同学而言是一项充满挑战的任务。为了助你顺利度过这个阶段,更好地投入到更为重要的就业和考试准备中,学长乐意分享优质的选题经验以及毕设项目的技术思路。对毕设有任何疑问都可以问学长哦!原创 2024-03-01 21:09:22 · 1749 阅读 · 1 评论