基于yolov8的月饼数据检测【含源码和数据集】

1.收集数据集

随着深度学习技术在计算机视觉领域的广泛应用,行人检测和车辆检测等任务已成为热门研究领域。然而,实际应用中,可用的预训练模型可能并不适用于所有应用场景。
例如,虽然预先训练的模型可以检测出行人,但它无法区分“好人”和“坏人”,因为它没有接受相关的训练。因此,我们需要为自定义检测模型提供足够数量的带有标注信息的图像数据,来训练模型以区分“好人”和“坏人”

1.1 使用开源已标记数据集

使用开源数据集是收集数据的最简便方式之一。例如,ImageNet 是一个大型图像数据库,包含超过 1400 万张图像,可用于深度学习模型的训练。此外,像 COCO 、PASCAL VOC 这样的数据集也经常用于目标检测模型的训练和评估。但是这些数据库中的图像通常来自不同的领域和应用场景,因此可能无法完全满足特定研究的需求。

1.2爬取网络图像

另一种选择是通过网络搜索图像,并手动选择要下载的图像。然而,由于需要收集大量数据,因此此方法的效率较低。需要注意的是,网络上的图像可能受到版权保护。在使用这些图像之前,务必检查图像的版权信息。
或者,您可以编写一个程序来爬取网络并下载所需的图像。但是这需要对数据进行清洗。以确保数据质量。同样需要注意检查每个图像的版权信息。

1.3自己拍摄数据集

对于一些特定的应用场景,如自动驾驶和安防监控等,需要收集特定场景下的数据,这时候就需要进行自主拍摄。可以在实际场景中拍摄图像或视频,并对其进行标注,以获得适用于特定场景的高质量数据集。

1.4使用数据增强生成数据集

我们知道深度学习模型需要大量的数据。当我们只有一个小数据集时,可能不足以训练一个好的模型。在这种情况下,我们可以使用数据增强来生成更多训练数据。
常见的增强方式就是几何变换,类似翻转、裁剪、旋转和平移这些。

1.5使用算法合成图像

最后一种获取目标检测数据集的方法是使用合成图像。合成图像是通过使用图像处理软件(例如 Photoshop)在图像中添加对象、更改背景或合成多个图像以创建新的图像。这种方法可以提供一些特殊情况或无法通过其他方式获得的图像,但是合成图像通常无法完全代替真实场景的数据,可能会对模型的准确性产生一定的影响
或者我们可以使用生成对抗网络 (GAN )来生成数据集
值得注意的是,收集训练数据集只是我们训练自定义检测模型的第一步。。。接下来我们要个绍如何标注数据集。当然这一步是假设你的图片已经准备完成。
本次案例使用我个人的 月饼数据集

链接: https://pan.baidu.com/s/1-DwTH6roNDSqW4NyqoA3BQ?pwd=25rt 提取码: 25rt 

2.标注数据集

为什么要标注数据集?标注好的数据集有什么作用呢?答:为了让计算机学会正确地识别物体,我们需要提供大量的标注数据集,这些数集包含了图像或视频中物体的位置和类别信标注数据集的作用在干,它可以帮助计算机学习到如何识别不同种类的物体,并且能够正确地定位它们的位置。通过标注数据集我们可以让计算机逐渐学会如何识别和分类不同种类的物体,例如人、车、动物等等。这些数据集可以被用来训练深度学习模型让模型学会如何识别新的图像或视频中的物体。
举个简单例子:比如说,我们想要让计算机自动识别图像中的猫和狗。为了让计算机学会如何识别这两个物体,我们需要提供一些图像样本,并在这些样本上标注猫和狗的位置。如果我们没有标注数据集,计算机就无法学习到如何识别猫和狗。即使我们给计算机提供了大量的图像,它也无法准确地区分这两个物体。但是,如果我们有了标注数据集,计算机就可以通过学习这些数据来理解猫和狗之间的差异,并且可以在新的图像中准确地识别它们。
(当然这个例子指的是监督学习)

2.1确认标注格式

YOLOv8 所用数据集格式与 YOLOv5 YOLOv7 相同,采用格式如下:

<object-class-id> <x> <y> <width> <height>

常用的标注工具有很多,比如LabeLImg 、LabeUMe 、VIA等,但是这些工具都需要安装使用,我这里给大家介绍一款在线标注数据集的工具 Make Sense,打开即用,非常的便捷,在标注之前,我们来看一下一般情况下遵循的标注规则:
1.目标框必须框住整个目标物体,不能有遗漏和重叠。
2.目标框应该与目标物体尽可能接近,但不能与目标物体重合
3.目标框的宽度和高度应该为正数,不能为零或负数。
4.如果一张图片中有多个目标物体,每个目标物体应该用一个独立的目标框进行标注,不允许多个目标共用一个框.
5.如果目标物体的形状不规则,可以使用多个框进行标注,但必须框住整个目标物体。
6.目标框的坐标必须在数据集中统一。

2.2开始标注

确认好标注格式后我们就可以开始标注了,进入网页后点击 Get started 开始使用。
在这里插入图片描述
首先点击 Drop images 然后 ctrl+A 选中整个数据集里面的图片。
在这里插入图片描述
随后添加标签信息,有几类就添加几个,因为我这里只检测月饼一类,所以只添加一个标签 Moon Cake.

在这里插入图片描述
随后就进入了漫长的标注环节,这里大家一定要认真标注,不然对最终模型的影响还是很大的。
在这里插入图片描述
标注完成后我们点击 Action -> Export Annotation 导出 yolo 格式的标签文件。
在这里插入图片描述
导出之后的标签文件就是这个样子的,我们可以随机抽查几个看看有没有问题。
在这里插入图片描述

3.划分数据集

也就是说,我们现在导出后的图片和标签是这个样子的:

Moon_Cake
	├─images
	   └─all
	└─labels
	   └─all

但是 YOLO8 所需要的数据集路径的格式是下面这样子的(YOLOv8 支持不止这一种格式),我们接下来要通过脚本来来划分一下数据集。

├── yolov8_dataset
	└── train
		└── images (folder including all training images)
		└── labels (folder including all training labels)
	└── test
		└── images (folder including all testing images)
		└── labels (folder including all testing labels)
	└── valid
		└── images (folder including all testing images)
		└── labels (folder including all testing labels)

具体其实只要修改路径就行了,代码我都做了注释。

import os
import random
import shutil

def copy_files(src_dir, dst_dir, filenames, extension):
    os.makedirs(dst_dir, exist_ok=True)
    missing_files = 0
    for filename in filenames:
        src_path = os.path.join(src_dir, filename + extension)
        dst_path = os.path.join(dst_dir, filename + extension)
        
        # Check if the file exists before copying
        if os.path.exists(src_path):
            shutil.copy(src_path, dst_path)
        else:
            print(f"Warning: File not found for {filename}")
            missing_files += 1

    return missing_files

def split_and_copy_dataset(image_dir, label_dir, output_dir, train_ratio=0.7, valid_ratio=0.15, test_ratio=0.15):
    # 获取所有图像文件的文件名(不包括文件扩展名)
    image_filenames = [os.path.splitext(f)[0] for f in os.listdir(image_dir)]

    # 随机打乱文件名列表
    random.shuffle(image_filenames)

    # 计算训练集、验证集和测试集的数量
    total_count = len(image_filenames)
    train_count = int(total_count * train_ratio)
    valid_count = int(total_count * valid_ratio)
    test_count = total_count - train_count - valid_count

    # 定义输出文件夹路径
    train_image_dir = os.path.join(output_dir, 'train', 'images')
    train_label_dir = os.path.join(output_dir, 'train', 'labels')
    valid_image_dir = os.path.join(output_dir, 'valid', 'images')
    valid_label_dir = os.path.join(output_dir, 'valid', 'labels')
    test_image_dir = os.path.join(output_dir, 'test', 'images')
    test_label_dir = os.path.join(output_dir, 'test', 'labels')

    # 复制图像和标签文件到对应的文件夹
    train_missing_files = copy_files(image_dir, train_image_dir, image_filenames[:train_count], '.jpg')
    train_missing_files += copy_files(label_dir, train_label_dir, image_filenames[:train_count], '.txt')

    valid_missing_files = copy_files(image_dir, valid_image_dir, image_filenames[train_count:train_count + valid_count], '.jpg')
    valid_missing_files += copy_files(label_dir, valid_label_dir, image_filenames[train_count:train_count + valid_count], '.txt')

    test_missing_files = copy_files(image_dir, test_image_dir, image_filenames[train_count + valid_count:], '.jpg')
    test_missing_files += copy_files(label_dir, test_label_dir, image_filenames[train_count + valid_count:], '.txt')

    # Print the count of each dataset
    print(f"Train dataset count: {train_count}, Missing files: {train_missing_files}")
    print(f"Validation dataset count: {valid_count}, Missing files: {valid_missing_files}")
    print(f"Test dataset count: {test_count}, Missing files: {test_missing_files}")

# 使用例子
image_dir = 'datasets/coco128/images/train2017'
label_dir = 'datasets/coco128/labels/train2017'
output_dir = './my_dataset'

split_and_copy_dataset(image_dir, label_dir, output_dir)

运行完脚本后我们的数据集就会划分成这个格式了,现在数据准备工作就彻底完成了,接下来我们开始着手训练模型。
在这里插入图片描述

4.配置训练环境

4.1获取代码

git clone https://github.com/ultralytics/ultralytics

针对网络不好的同学,我这里上传了一份:

链接: https://pan.baidu.com/s/1crFGhcmvik-sZJfXY3ixkw?pwd=xma5 提取码: xma5 

4.2安装环境

cd ultralytics
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

5.训练模型

5.1新建一个数据集yaml文件

这个是我新建的,里面写绝对路径 (主要是怕出错):

# moncake
train: D:\Pycharm_Projects\ultralytics\ultralytics\datasets\mooncake\train  # train images (relative to 'path') 128 images
val: D:\Pycharm_Projects\ultralytics\ultralytics\datasets\mooncake\valid # val images (relative to 'path') 128 images
test: D:\Pycharm_Projects\ultralytics\ultralytics\datasets\mooncake\test # test images (optional)

# Classes
names:
  0: MoonCake

在这里插入图片描述
相应的数据集位置就在这里,我们可以和 coco128 对比一下,这两种划分格式都可以的,这里一定要注意路径问题!

5.2预测模型

python 指令推理方式

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg')  # predict on an image

终端推理方式

yolo task=detect mode=predict model=yolov8n.pt source=data/images device=0 save=True

在这里插入图片描述
就这张图来说,v8 确实比v5 牛左上角的标志都检测出来了,但是阳台上的自行车还是没检测出来。

5.3训练模型

模型训练阶段的原理和预测步骤一致,都可以直接通过命令行搞定,关于这部分参数依然在ultralytics/yolo/cfg/default,yanl中,但我们要训练自己的数据集时记得在 data 参数后指定我们自己的数据集 yamL 文件路径哦。
以下提供两种指令,分别对应了不同的需求。(这里有一点值得注意,我直接写 data=MoonCake.yal 是报错的! 这个涉及到一个坑的问题,没遇到的同学暂且忽略)
python指令训练方式

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.yaml')  # build a new model from YAML
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Train the model
model.train(data='coco128.yaml', epochs=100, imgsz=640)

终端

tensorboard --logdir runs\detect\train2

训练结束后我们可以查看得到的一些指标数据:
在这里插入图片描述
在这里插入图片描述
我这里展示一张 PR 曲线图。

6.验证模型

验证模型同样是简单命令行即可实现,如果没有修改中的 ultralytics/yolo/cfg/default,yamL 默认值,同样别忘了指定自己数据集的 yaml ,即 data=ultralytics/datasets/MoonCake.yaml
python 指令验证方式

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map    # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps   # a list contains map50-95 of each category

我们可以看一下检测效果:
在这里插入图片描述

7.导出模型

python指令方式导出

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom trained

# Export the model
model.export(format='onnx')

至此使用 YOLOv8 训练自己的目标检测数据集七大步已经完成!!!
完整数据集及代码:

链接: https://pan.baidu.com/s/1aW03NWLSug09lAQVPPUiDg?pwd=q7ub 提取码: q7ub 
--来自百度网盘超级会员v3的分享

更多YOLO系列开源代码
详情添加VX: AI_xiaoao

  • 9
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Scratch中秋节抢月饼游戏源码中,我们可以使用不同的编程块来实现游戏的功能。首先,我们需要创建一个背景,可以选择一个有关中秋节的图像作为背景,例如月亮和星星。 然后,我们需要添加一个角色,可以选择一个小人作为角色,并添加相应的动作和动画。 接下来,我们需要添加一个月饼作为游戏的目标,可以选择不同的月饼图案,例如荷叶月饼、蛋黄月饼等。将月饼放置在屏幕的随机位置,使得玩家能够通过点击来抓住它。 为了让月饼能够被抓住,我们需要为角色添加一些代码。当玩家点击角色时,我们可以使用"当角色被点击"这个事件块来触发一系列的动作。比如,我们可以添加一个"抓取"的动画,让月饼消失,并增加得分。 我们还可以设置一个计时器,计算玩家在规定时间内能抓住的月饼数量。当时间到达后,游戏结束,可以添加一个弹出框显示玩家的得分,并给予相应的奖励。 为了增加游戏的难度,我们可以设置月饼的移动速度。可以使用"向"编程块来让月饼沿着某个方向移动,当月饼移动到屏幕边缘时,重新放置到随机位置,增加玩家的难度。 最后,我们可以添加一些背景音乐和音效,使得游戏更加有趣。可以使用"播放音效"块来添加适当的音效,例如当玩家抓住月饼时播放一个"获胜"的音效,或者当玩家未能抓住月饼时播放一个"失败"的音效。 总的来说,在Scratch中秋节抢月饼游戏源码中,我们可以利用不同的编程块来实现游戏的各种功能,包括创建背景、设置角色、添加月饼目标、计分和计时、设置月饼的移动速度、添加音效等。通过合理使用这些块,我们可以创造一个有趣而有挑战性的游戏体验。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值