VoxelNet
论文标题:
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
网址:
https://arxiv.org/pdf/1711.06396.pdf%20em%2017/12/2017.pdf
代码参考:
https://github.com/ModelBunker/VoxelNet-PyTorch
摘要
why
为了将高度稀疏的LiDAR点云与区域提案网络(RPN)连接起来,大多数现有工作都集中在手工制作的特征表示上,例如鸟瞰投影。在这项工作中,我们消除了对3D点云的手动特征工程的需求,并提出了VoxelNet
附录
RPN
KEY: 使用一个深度的卷积神经网络来获取图片Proposals。
这个东西是从Fast R-CNN 里面所提到的。
what?
他是一个模块,用来生成框框
why?
以前用的是selective search 算法
后边用 EdgeBoxes
最后用的CNN 配合 GPU来使用。
并且呢,以前的想法是这样子的:
首先通过算法(selective search/edgeBox)生成框框(提取特征从而得到这些区域),然后判断这个框框里面有没有target。
但是如果用CNN的话,其实可以有一个share的过程。
可以在卷积之后,直接使用特征图来画出BOXes
从而得到下面的这张图:
对比一下Fast R-CNN的过程