VoxelNet学习

VoxelNet提出了一种无需手动特征工程的3D对象检测方法,利用深度卷积神经网络替代传统算法如SelectiveSearch和EdgeBoxes,实现共享特征并提高效率。它在FastR-CNN的基础上,通过CNN直接从特征图生成边界框,简化了3D检测流程。
摘要由CSDN通过智能技术生成

VoxelNet

论文标题:

VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

网址:

https://arxiv.org/pdf/1711.06396.pdf%20em%2017/12/2017.pdf

代码参考:

https://github.com/ModelBunker/VoxelNet-PyTorch

摘要

why

为了将高度稀疏的LiDAR点云与区域提案网络(RPN)连接起来,大多数现有工作都集中在手工制作的特征表示上,例如鸟瞰投影。在这项工作中,我们消除了对3D点云的手动特征工程的需求,并提出了VoxelNet

附录

RPN

KEY: 使用一个深度的卷积神经网络来获取图片Proposals。

这个东西是从Fast R-CNN 里面所提到的。

what?

他是一个模块,用来生成框框

why?

以前用的是selective search 算法

后边用 EdgeBoxes

最后用的CNN 配合 GPU来使用。

并且呢,以前的想法是这样子的:
在这里插入图片描述
首先通过算法(selective search/edgeBox)生成框框(提取特征从而得到这些区域),然后判断这个框框里面有没有target。
但是如果用CNN的话,其实可以有一个share的过程。
可以在卷积之后,直接使用特征图来画出BOXes

从而得到下面的这张图:
在这里插入图片描述
对比一下Fast R-CNN的过程

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值