LightOJ 1085 - All Possible Increasing Subsequences(DP + 线段树 + 离散)

题意 : 求一个数列的所有严格递增子序列的数量。

思路 : 定义一个状态:dp[i]表示第i个位置的数a[i]为这个序列的结尾的所有递增子序列数量,dp[i] = ∑dp[k] (a[i] > a[k] && i > k),这样可以用一个线段树来维护寻找[min, a[i] - 1]所有的dp[k]的总和,而因为输入的|a[]| < 2 ^ 32 - 1, 所以先离散化处理。


#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
const int maxn = 100005;
const int mod = 1000000007;
#define lson rt<<1, l, mid
#define rson rt<<1|1, mid+1, r


struct read
{
      int v, p;
}q[maxn], p[maxn];
int ls[maxn], a[maxn];
int dp[maxn<<2], n;

int cmp(read a, read b)
{
      return a.v < b.v;
}

void init_input()
{
      for (int i = 1; i <= n; i++)
      {
            scanf("%d", &q[i].v);
            q[i].p = i;
      }
      sort(q + 1, q + 1 + n, cmp);
      ls[1] = q[1].v; p[1].v = 1; p[1].p = q[1].p;
      for (int i = 2; i <= n; i++)
      {
            if (q[i].v == ls[i-1])
            {
                  p[i].v = p[i-1].v;
            }
            else
            {
                  p[i].v = p[i-1].v + 1;
            }
            ls[i] = q[i].v;
            p[i].p = q[i].p;
      }
      for (int i = 1; i <= n; i++)
      {
            a[p[i].p] = p[i].v;
      }
}

void pushup(int rt)
{
      dp[rt] = dp[rt<<1] + dp[rt<<1|1];
      dp[rt] %= mod;
}

void build(int rt, int l, int r)
{
      if (l == r)
      {
            dp[rt] = 0;
            return ;
      }
      int mid = (l + r) >> 1;
      build(lson); build(rson);
      pushup(rt);
}

void update(int rt, int l, int r, int loc, int addv)
{
      if (l == r)
      {
            dp[rt] += addv;
            dp[rt] %= mod;
            return ;
      }
      int mid = (l + r) >> 1;
      if (mid >= loc)update(lson, loc, addv);
      else update(rson, loc, addv);
      pushup(rt);
}

int query(int rt, int l, int r, int L, int R)
{
      if (r < l || l > R)return 0;
      if (l >= L && r <= R)
      {
            return dp[rt];
      }
      int mid = (l + r) >> 1, res = 0;
      if (mid >= L)res += query(lson, L, R); res %= mod;
      if (R > mid) res += query(rson, L, R); res %= mod;
      return res;
}

void debug()
{
      for (int i = 1; i <= n; i++)printf("%d ", a[i]);
      printf("\n");
}

int main()
{
      int T;
      scanf("%d", &T);
      for (int cas = 1; cas <= T; cas++)
      {
            scanf("%d", &n);
            init_input();
            //debug();
            build(1, 1, n);
            int res = 0;
            for (int i = 1; i <= n; i++)
            {
                  int tt = query(1, 1, n, 1, a[i] - 1) + 1;
                  res += tt; res %= mod;
                  update(1, 1, n, a[i], tt);
            }
            printf("Case %d: %d\n", cas, res);
      }
      return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值