【深度学习】LSTM/CNN+LSTM实现图片分类

【深度学习】LSTM/CNN+LSTM实现图片分类

毕设实验设计部分:作为对照的单LSTM模型实现模型以及CNN+LSTM模型实现
注意:一般LSTM单模型不会用来实现图片分类,只做教学用途。

LSTM

主要需要注意的是,LSTM单元输入的是(num_timesteps, num_features)
X = X.reshape(X.shape[0],X.shape[1]*X.shape[2],-1)将图片尺寸转换为可以输入的尺寸

完整代码


import tensorflow as tf
import pathlib
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import os 
import numpy as np 
from sklearn.model_selection import  train_test_split
from tensorflow.keras.utils import  to_categorical
import cv2 
'''
使用图片数据作为输入数据集,使用lstm作为网络模型
'''
# 图片文件夹
DATA_PATH = os.path.join() # 自行进行填充
# 定义类别名称
actions = np.array([])# 自行进行填充

no_sequences = 30
# 
sequence_length = 30

images_path = []
images,labels = [],[]
for action in actions:
  for sequence in range(no_sequences):
    for frame_num in range(sequence_length):
      img_path = os.path.join(DATA_PATH,action
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值