Lecture 22: Hydrogen atom (cont.). Differential equation, series solution and quantum numbers

L22.1 Center of mass and relative motion wavefunctions (14:22)

L22.2 Scales of the hydrogen atom (09:56)

L22.3 Schrödinger equation for hydrogen (20:59)

L22.4 Series solution and quantization of the energy (14:22)

L22.5 Energy eigenstates of hydrogen (12:24)

L22.1 Center of mass and relative motion wavefunctions (14:22)

MITOCW | watch?v=dVWKsiaAZ14
PROFESSOR: We have the hydrogen atom Hamiltonian. Hamiltonian. And that was given by the kinetic
operator for the proton plus the kinetic operator for the electron plus the potential, which was a
function of the distance between the proton and the electron.
And what we achieved last time was the introduction of two new pairs of canonical variables.
We had the electron position momentum, that’s a pair of canonical variables. The proton
position and momentum, that’s another pair of canonical variables. They commute each pair,
the two operators commute to give IH bar, but the two pairs are independent.
So we search for another two pairs of variables, and we found another two pairs. One was the
P and X associated with the center of mass motion, and then we had the small p and small x
associated with the relative function. And these four variables were a function of the original
four variables, the X and P of the electron and the x and p of the proton.
So we define these two pairs, and they were canonical pairs. This x with this p gave IH bar,
this x with this p gave IH bar, these p’s and x’s commute with any combination of p’s and x’s
over there.
But not only was that pretty good, it simplified the Hamiltonian. So at the end of the day, we
had a Hamiltonian, which was as if the center of mass moves like a free particle plus a kinetic
energy for the relative motion, with a mass called the renews mass, and the potential for the
relative position. And here, the mass, capital M, was the sum of the two masses. And the
relative mass was the product of the masses over the sum, which has the property that if one
of the two masses is much bigger than the other, it gives you a mass mu proportional roughly
equal to the lower mass.
So this is the hydrogen atom reformulated. And now, we want to write the Schrodinger
equation and just see effectively how the central potential formulation of the relative motion
arises. Although, it starts to be a little somewhat clearer, I think, that that’s going to happen.
Another thing to notice of course, is that if you’re already thinking of a Schrodinger equation, in
which you will think of the momenta as the derivative operators, the center of mass
momentum should be thought as the derivative operator with respect to the center of mass
position. So think of the center of mass as three coordinates, and you differentiate with respect
to them.
Similarly, for the relative momentum, we’ll think of it as a gradient with respect to the relative
position, because that’s the canonical coordinate that goes along with it. That’s how we should
think of this operator as derivative.
And before, we didn’t have to put those subscripts in [INAUDIBLE], because we always had
just one coordinate to work with. But now, you have two coordinates. What you’ve learned
here in doing this analysis was that we have a wave function that has coordinate dependence
on both the electron and the proton.
So let’s do the separation of variables that shows how to deal with this system. So you want to
write the wave function for the whole system, so it depends on the center of mass and on the
relative coordinates. Now, I don’t put time, because we’re discussing time independent
Schrodinger equation, where the time you can put it later, if you wish, with the total energy into
the minus IET.
So what we will consider is a simple solution that is of the product type. So there will be a wave
function associated up factor, which is a wave function associated with center of mass, and the
wave function associated to the relative motion. And we want to replace this into the
Schrodinger equation into H psi equals E psi.
So let’s see how it would go. Each term of the Hamiltonian is going to act on this product of
functions that determines the whole wave function. The center of mass momentum, being
derivative, respect to this x, will act just on the first term. So we’ll have p squared over 2 m
acting on psi c m of x. And the relative wave function in that term just goes for the ride. So
that’s the first term in the Hamiltonian.
For the second term in the Hamiltonian, we would have p squared over 2 mu. We could add
them psi relative, and let’s put even the potential here, v of x relative-- we don’t put the relative
on the x, but they’ll just-- it’s a small x psi relative of x. So we’ve looked at the second term and
the third term. The third term is grouped with the second, because it uses the little x, not the
big X. And then you have psi cm of x multiplicativly, it doesn’t do anything to it.
All this is equal to e times the psi cm of x psi relative of little x. OK, that’s the Schrodinger
equation. And this should remind you, it’s very similar to what you did months ago of having
motion’s in say, in two dimensions, and you wrote part of the wave function dependant on x,
part of a wave function dependant on y, and you separated the Schrodinger equation.
So the next thing to do is to divide by the total wave function, by the product. So divide 5 by
the total wave function. So what do you get? From the first term, you will get 1 over psi cm of
capital X times this p squared over 2 m psi cm of capital X. And that’s all what comes of the
first term.
From the second, you get plus 1 over psi relative of x and this whole bracket squared over 2
mu psi relative plus V of x psi relative. And the whole thing being equal to E. The two wave
functions are divided there.
So we have a situation where a number is the sum of two functions. Now, what is funny of
course, is the argument you’ve heard several times. This first term depends just on the capital
X-coordinates. The second term depends just on the lower x-coordinates, small x-coordinates.
I didn’t write them in some places, but here they are. And therefore, the only way these two
things can always be true, is if the first term is a number. And we’ll call it Ecm. The whole thing
must be a number, we’ll call it Ecm. And the second term should be another number, and I’ll
call it E relative. That’s E relative.
So our conclusion is that if this first term is a number equal to Ecm we can multiply by psi cm
and get p squared over to 2m psi cm of x is equal to Ecm times psi cm of x. Which is a time
independent Schrodinger equation for a wave function psi cm that is moving freely.
The next equation is the one within brackets, which is p squared over 2 mu psi relative of x
plus v of-- now I can put r, when I say that r is the magnitude of x psi relative of x equals e
relative-- I should move this-- psi relative of x. And we said that r was this.
So the second equation comes from this term identified with relative. And the last equation is
to say that the total energy is equal to Ecm plus e relative.
So the whole two body problem has been reduced to these three equations. This is what we
aim to show. This is a gradient squared on this wave function, the central potential term, and
the rest of the Schrodinger equation. So this is a Schrodinger equation for a particle in the
central potential. That particle happens to be the relative distance between these two particles,
but it obeys a central equation potential.
Here is the center of mass. Solutions of this is a plane wave, momentum plane waves,
because this is like a free particle, and that’s our intuition. The hydrogen atom can move like a
free particle. That’s an overall quantum system and then there’s the relative degrees of
free particle. That’s an overall quantum system and then there’s the relative degrees of
freedom. The total energy of this system must be the sum of the two.
So that said for the system, we are allowed now, to consider the hydrogen atoms. So that’s
what we’ll do next.

L22.2 Scales of the hydrogen atom (09:56)

MITOCW | watch?v=GWMeYKUvj7Y
PROFESSOR: Hydrogen atom, the first thing to do is to describe the potential V or r. And it would be in the
units that we’d like to use minus e squared over r. e is the charge of the electron, and the
electron and proton with the same charge. The potential energy is negative. And that sign you
should be comfortable with. It’s suggesting that you go closer and closer. You’re going down
and energy is favored. The two particles to go on top of each other.
Immediately we want to generalize it a little so that it’s hydrogen like atoms. And we’ll put a Z
here, assuming that the proton, instead of the program, there’s a nucleus with z protons. And
there probably would be about z electrons, but we’re worried now about just one electron.
And in this case, a charge in the proton is ze multiplied by the charge of the electron gives you
this as the potential energy. And this is advantageous. You sometimes have an alpha particle
that captures an electron, and then there’s two protons. And you don’t want to solve this,
again, from the beginning. So just put the z, and that’s what we will do.
So a few numbers. We’ve done some of these numbers before, but the Bohr radius and one
way of calculating the Bohr radius is to just think of units and think of energy. Energy goes like
h squared over ma squared. This has units of energy. You remember p squared over 2m. And
p is h over distance.
So if you have a Bohr radius a 0, this quantity has units of energy. But a potential has units of
energy and we just put e squared over a0. So this is a consistent equation between two
quantities that have units of energy from which you can get the unique length that has units of
energy, which is a0. And a0 is h squared over me squared. It’s a very simple and nice
constant is the Bohr radius.
Intuitively one thing that should remember, e is appearing in the right place. And you could
imagine if the strength of electricity was weaker and weaker, like setting e going to 0, the atom
would become bigger and bigger. It would just not be able to hold it. So it’s reasonable to
expect this to happen.
So at this moment, we can calculate what this is, at least, estimate it. And for that, we multiply
by a c squared e squared over m-- mc squared. And then we recall that e is squared over hc
is about 1 over 137. So we write this as hc over e squared over hc times mc squared.
Now in here what mass is the mass that we should put. I will not be all that careful. It should
really be the reduced mass. But in differs by a factor of one part in 1,000 or less even from the
mass of the electrons. So I’ll put just the mass of the electron.
This it’s about 197 mev for Fermi. This is 1 over 137. And for the electron is 0.5 times 10 to
the 6 ev 0.5 mev. I won’t run the numbers. The answer is about 0.529 angstroms, which is
about 53 picometers.
Angstrom is 10 to the minus 10 meters. Picometer 10 to the minus 12 meters. So that’s a
length scale you’ve seen several times. There’s an energy scale that is famous to. And that’s e
squared over a0. Because energy comes here, the energy scale is e squared over e0.
So you can substitute what a0 is because you know it already. And you get e to the fourth over
m over h squared, which is e to the fourth over h squared c squared times Mc squared. And
you see it’s kind of nice to see these quanities appearing, because here you have e squared
over hc squared times mc squared.
So the typical energy of the hydrogen atom is the fine-structure constant, sometimes called
alpha squared times an energy. And what energy’s available in the problem? The rest energy
of the electron.
So if the bound state energy should be something, it should be a number proportional to the
energy that the problem already has. And the problem has one energy, the rest energy of the
electron. So it’s not surprising. So it’s one over 137 squared times 511,000 ev. And that’s
about 27.2 ev.
And the reason this may sound familiar is because the true ground state energy of the
hydrogen atom is this number divided by 2, which is 13.6 ev. So of course, you would not
know at this stage, because you’re just doing numbers. I may remind you of things did a long
time ago in this course. You calculated a couple of other constants.
And you showed that alpha-- again, the fine-structure constant comes a0 was the so-called
Compton wavelength of the electron, with a bar. So it’s h bar over mc. Remember, that the
Broglie wavelength is h over the momentum. The Compton wavelength this h over mc. And
the Bard can wave at the h bar over mc. And that’s what alpha times a zero is.
And that quantity is about 400 Fermi. It’s already much smaller than the Bohr radius. It’s
smaller by 137 from the Bohr radius. And then if you do alpha squared a0, that actually was
the classical electron radius.
So you must divide this by 137, again, and it gives you about 2.8 Fermi. And what you can
remember is that the size of a proton is about a Fermi. So that gives you a little bit of intuition.
So those are the basic numbers that we begin with, with the hydrogen atom. It gives you a
scale of what’s going on, the size of an atom, and the energies that we’re supposed to get.

L22.3 Schrödinger equation for hydrogen (20:59)

MITOCW | watch?v=KfbvrGt3MlI
PROFESSOR: So we’ll look at the Schrodinger equation. We’re going to work for bound states. We could
work with scattering states in spherical coordinates, but it’s usually done in advanced courses.
The most important thing is the calculation of the bound states. This is kind of a neat part of
quantum mechanics because, in a sense, you get accustomed in quantum mechanics about
uncertainties. You cannot predict the probability that the photon will go through this branch of
the interferometer or this other probability. You can’t be sure and all this. But here you get the
energy levels. And you get the exact energy level. So it’s a nice thing that, in quantum
mechanics, energy levels are things that you calculate exactly.
Of course, when you try to measure energy levels experimentally, the uncertainties arise
again. You get the photon of some energy and then there’s some energy time uncertainty or
something like that, that can bother you. But the end result is that these systems have
beautifully the term in fixed numbers called energy levels. And that’s what we’re aiming at.
It’s a nice thing because it’s the most physical example. It has many applications. The energy
levels of hydrogen atom. The more you study, the more complicated they are because you
can include fine effects, like the effects of the spins of the particles. What does it do? The
specs of relativity. What does it do? All kinds of things you can put in and do more and more
accurate results. So it’s really unbelievable how much you can learn with the fine spectrum of
the hydrogen atom.
Our equation is minus h squared over 2m, d second dr squared-- the radial equation-- plus h
squared l times l plus 1 over 2mr squared minus ze squared over r, u is equal to Eu. So this is
the radial equation. Remember it was like the Schrodinger equation for a variable u. And the
wave function was u over r times psi lm or Ylm, actually, a spherical harmonic.
Here I could have labeled u with E and l because could certainly u depends-- u is u of r. And u
depends on the energy that we’re going to get. And it will depend on l that is there, in the
differential equation.
This is the effective potential that we discussed before. It was the original potential to which
you add the centrifugal barrier. And what are you supposed to solve here? You’re supposed to
solve for l equals 0. To find some states for a, go one, two, three, four, infinity. You should find
all the energy levels of this thing.
So the wave function is psi of r theta and phi will be this u of r over r times Ylm of theta and
phi. And, in fact, plugging that into the Schrodinger equation was what gave us this radial
equation. So this was called the radial equation, which we talked about, but never quite solved
it for any particular example.
OK. As you know, we like, in this course, to get rid of units and constants, so our first step is to
replace r by a unit free x. And we have the right quantity. a0. a0 would be the perfect thing. So
you-- if you do that, you will be able to clean up the units. But if you do that, you might not
quite be able to clean up the z from all the places that you would like to clean it up. So we can
improve that-- maybe it’s not too obvious. --by putting a 2 over z Here. z has no units, of
course, so that you would probably do by trial and error. You would say, well I want to get rid
of the z as well. And I have it in this form. And you will see how it works out.
So at this moment, I have to plug r into this equation and just clean it up. And what should
happen is that everything, all the units, should give you a factor with units of energy. Because
at the end of the-- whatever is left, it’s not going to have units. Everything out must have units
of energy.
So this takes about one line to do. I’ll skip some algebra on these things. I’ll try to post notes
soon on this. So if you leave a line you could do that calculation for yourselves and it might be
worth it.
The claim is that we get 2z squared e squared over a0, multiplying minus d second, dx
squared plus l times l plus 1 over x squared minus 1 over x, times u, equals Eu. That will be
the common factor that will come out of everything by the time you solve it. And it has the units
of energy, as you can imagine. e squared over a0 has a unit of energy.
So might as well move that to the other side to get the final form of the equation, which would
be minus d second, dx squared plus l times l plus 1 over x squared, minus 1 over x, u is equal
to minus kappa squared u. Where kappa squared is going to be minus E over 2z squared little
e squared over a0.
OK. The trick on all these things is to not lose track of our variables. And that-- it’s a little
challenging. So let me just re-emphasize what’s going on here.
We’ve passed from r variables to u variables, that we will still do more things. And we have a0
in there, z in there, and then the energy is really encapsulated by kappa squared here. And
this kappa is unit free.
So if you know kappa, you know the energies. That’s what you should be looking for. Kappa is
the thing you want to figure out. Knowing kappa is the same as knowing their origins because
this is just a constant that gives you the scale of the energy. So this is what we want to solve.
And the equation doesn’t look all that complicated, but it’s actually not yet that simple,
unfortunately. So we have to keep working with it a bit.
So one reason you can see that an equation like that would not be too simple, is to look at it
and see what kind of recursion relation it would give you. And that’s a good thing to look at the
beginning. And you say, OK here I’m going to lower the number of powers by two. Here I’m
going to lower the number of powers by one. And here I’m not going to lower the number of
powers. You’re gonna have three terms. So it’s not that simple recursion relation, which the
next term is determined by the previous one. So that suggests you better do some work still
with this equation to simplify the situation.
And several things that you can do-- one thing is to look at the behavior of the equation, near
infinity, near zero, and see if you see patterns going on.
One thing we’re going to do is to-- which is not urgent, but it’s usually done. And people do it in
different ways. --is to look at x goes to infinity and see what the solutions may look like. So as x
goes to infinity, the differential equation probably can be approximated to keep this storm to
see how things vary. And x goes to infinity. Throw this, throw this, and keep that. So you would
have d second u dx squared is equal to kappa squared. So this suggests that u goes like e to
the plus minus kappa x.
So exponential behavior. e to the plus minus kappa x. Ideally, of course, for our solutions, we
would like the minus one, but we will see what the equations do. Now this suggests, yet
another transformation that people do, which is-- look, kappa is dimensionless and we had x
that is unit free also. So kappa has no units, x has no units. So let’s move to yet another
variable.
We started with r being proportionate to x. And now we can put factors that may help us
without units here. So I’m not suggesting that this is something that would occur to me, if I’m
doing this problem, but it’s certainly a possible thing to do. To say, OK, I’m going to define now
rho as kappa x. And with x being given by this, rho would be 2 kappa z over a0 r.
So rho is going to be my new coordinate. I’m sorry, we’ve gone to x. And now we’ve gone to
rho, a new variable over here.
So what happens to the differential equation? Well, it’s going to be a little better, but in
particular the solutions may be a little better. But here it is. If you look at the differential
equation. The differential equation here. Think of moving the kappa squared here below. And
then you see, immediately, it fits perfectly well in the first two terms. So you get minus d
second, d rho squared plus l times l plus 1, rho squared. And here it doesn’t fit all that well.
You would have 1 kappa leftover, so 1 over kappa rho, u equals minus u.
Yes it’s kind of suggestive. The kappa has almost disappeared from everywhere, but it better
not disappear from everywhere. If it would have disappeared from everywhere we would have
been in problems because the equation would’ve not fixed the energy. You see we’re hoping
that the differential equation will have additional solutions for some values of the energy and
for the others no. So the energy better not disappear. It came close to disappearing, the
kappa, but it’s still here, so we’re still OK.
And now, you will say, OK, this is nice. If you look at rho going to infinity again. It works as we
wanted. You get d second u, d rho squared is equal to u. And that means u goes to e to the
plus minus rho, which is what inspired this.
And the other part of the solution is the solution at near r going to 0. Or your x going to 0 or
near rho equal-- going to 0. So near rho going to 0, you have these two terms. And we actually
did it last time. We analyzed what was going on with this equation last time. Near rho equal to
0. And we found out that u must behave like rho to the l plus 1 for rho going to 0.
So it was from this two terms the differential equation. And for rho going to 0. Remember the
wave function must vanish. And how fast it should vanish? Should vanish to this power to the l
plus 1.
OK. So you know lots of things about this function. So first of all, that this thing doesn’t have
necessarily polynomial solutions because it behaves exponentially. Moreover, you know it
doesn’t start with constant plus rho plus rho squared. It starts with rho to the l plus 1. So it is
pretty important to see all these things before you try to do a recursion relation because
recursion relation might lead you to funny things.
So here we go. What do we do based on all this? We try something better. Which is-- we said
u of rho, the solution-- we’re writing ansets --is going to be rho to the l plus 1, that will have the
right behavior for rho going to 0. An unknown function w of rho times e to the minus rho, which
is the right behavior we want.
Now there is no assumption, whatsoever, when you write in ansets of this form. You’re just
expressing your knowledge. Because at the end of the day if rho-- if omega-- or w here,
actually, is undetermined. This w will have an e to the rho that cancels this factor. And may be
off with some funny power that cancels this. This is just a hope that we’re expressing that by
writing this solution in this form, this quantity may be simple. Because we know this is present
in the solution for larger rho, this is present for small rho, well in between we might have that.
And when you write analysis of this form, you hope for a simple differential equation for w. So
what do we get? We can plug that ansets into the differential equation that we already have
and see what happens. And indeed that’s what we’ll do.
I’ll skip the calculation. In my notes, it took me half a page and I write big, so it’s not too long.
So what do we get? You get an equation that doesn’t look that simple. I’m sorry. It just looks
like a step back, but it’s not. d second w, d rho squared plus 2 times l plus 1 minus rho.
Strange. dw, d rho plus, 1 over kappa minus 2 times l plus 1, w equals 0.
OK. Aesthetically, it looks worse. Certainly that equation on the left board looked nicer, but
actually it’s pretty good because, again, now look at your recursion relation. How will it be? If
you take some power-- fixed power. Here you lose one power. Here with the l plus 1 of these,
you lose one power. Here you lose nothing. And here you lose nothing. So you have either
one power less or your power. So it’s a one step recursion relation without the gap. It’s not like
the two steps that we had for the harmonic oscillator, for the Legendre polynomials. Here is
one step recursion relation. ak plus 1 determined by ak. So we say, excuse me to the
equation, you don’t look that good, but you’re very solvable. So we can proceed.

L22.4 Series solution and quantization of the energy (14:22)

MITOCW | watch?v=3VXLIF2DpHI
PROFESSOR: Write w equals sum from k equals 0 to infinity a k rho k. And plug in-- I’ve suggested that
usually the thing that you should know when you plug in those equations is to look for the
power rho to the k in this equation. And just, since everything is equal to 0, the coefficient of
rho to the k in this equation should be 0. And that’s the easiest way to select the powers.
That’s good practice. You should do it. I won’t do it here. We’ve done it in a few cases.
So this will relate a k plus 1. To a k. So that’s algebra. It’s a good skill to be able to do it. But it
would be not very good use of our time to do it right now.
So here is the answer. OK. This is more important. 2 to the k plus l plus 1 minus 1 over kappa
over k plus 1 plus k plus 2l plus 2. OK.
We’ve got our recursion relation. And the issue is, again, what happens with this coefficient as
k goes to infinity? So as k goes large, a k plus 1 over a k goes like what? Well, we have a k
that is becoming large, and everything else doesn’t matter. There’s a k and a k, so there’s
going to be some cancellation. And this looks like roughly 2 to the k.
Now, you could change these numbers a little bit. I’m going to do a tiny trick to simplify it, but
it’s just a trick. Don’t worry about it too much.
I’ll put 2 to the k plus 1 here. And I will say, look, if the series diverges in this case, this
coefficient is bigger than that one. So it will certainly diverge for this case, as well. So the
coefficients here are smaller than those ones, this ratio. So if the ratio between coefficients
here is such that the series diverges, then it will even diverge a little more in this case.
And the reason I put it here is because then this is kind of solvable, a k plus 1 nicely solvable,
very nicely solvable, 2k plus 1 a k. And the solution of this is to say you can try with a 0, what a
1 is, what a 2. a k is 2 to the k a 0 over k factorial.
OK. With that we can reconstruct what kind of function this series would be building if the
series doesn’t terminate and will not be too surprising. So in this case, the sum over k of a k
rho k, which is the function we’re building, is roughly equal to this a k here, which is 2 to the k.
a 0 can go out. k factorial rho k. So this is a 0 e to the 2 rho.
It’s kind of fair of it to do that. It’s kind of saying that if the w solution doesn’t truncate, it’s going
to go like e to the 2 rho, which precisely with an e to the minus rho is going to give you the
other possible behavior of the solutions. It happened for the harmonic oscillator.
So what this is saying is that then w, which is this, would go roughly like that. And that’s bad.
So the series must truncate. So we must truncate the series.
OK. So here comes the interesting part because there’s lots of quantities, and that has to be
done a little slowly so that nobody gets confused of what’s going to happen. We have to
terminate this series. So how are we going to do it?
I’m going to state it the following way. I’m going to say that let’s assume that we want a
polynomial of degree capital N. There will be lots of little constants, capital N, little n. I want a
polynomial of degree capital N.
That means that a sub capital N is different from 0. And a capital N plus 1 is equal to 0. That’s
what should happen. If you have constants up to a capital N, you’ll have rho to the capital N,
and you’ll have a polynomial of degree N. But that must happen that the next one must be 0.
I don’t have to state that all of the rest are 0 because it’s a one-step recursion relation. Once a
5 is 0, a 6, a 7, a 8, all of them are 0. That’s it.
And we will have like even or odd solutions that we had for the harmonic oscillator because
these are functions of r. And r and minus r you should not quite expect anything. Minus r
doesn’t exist.
So this is what should happen. But if that happens, think of this. You have a n plus 1 should be
0. So the numerator should have become 0 for k equals 2N. So you have one over kappa is
equal to 2N plus l plus 1. And in a sense that’s it. Whatever had to happen, happened.
Why? The energy got quantized already. Somehow it did because the energy is kappa.
Remember, kappa squared actually was the ratio of the energy divided by the dimension
[INAUDIBLE]. So here it’s saying the energy is some number that has to do with an integer,
which is the degree of the polynomial you’re going to use, an l integer, and 1. So this is, of
course, pretty important.
So what values happen here? What are the possible values of l? Well, l here, l can go 0, 1, 2,
3, all of them. All of them are possible.
And why is that? It’s because of the physics of the problem. We assume we’ll have a particle in
a central potential. All values of angular momentum can exist. So we should be looking for l’s
that take all these values.
Moreover, N is the polynomial that you can choose. And N can also be all of those values. We
can begin with 0. So a 0 would be a number. But then it dies. A polynomial of degree 0 would
be just a constant. It’s possible. 1, 2, 3, all of those are possible.
And for each combination will have some energy. But here you start to see degeneracies,
multiple degeneracies, because if you have the number 100,000 here, it can be built in many,
many ways, 100,000 and 1 ways or something like that, with two integers that have to add up
to it. And all of them will have the same energy. So the hydrogen atom is going to have lots of
degeneracy.
So here is a little bit of a definition that we follow. So all these are allowed, all allowed, all
combinations allowed. So l can be anything, and capital N can be anything.
And let’s define a slightly better version of this thing. So let’s move the 2 down, 1 over 2 kappa.
That’s N plus l plus 1. And let’s call all this n, or the principal quantum number.
So n is the principal quantum number. And in some sense, well, you know that n has to be
greater or equal than 1. It’s an integer. And has to be greater or equal than 1 because of this 1
here and because the other ones cannot be negative either.
So n is a principal quantum number, and it’s a fundamental number because it immediately
gives you the value of the energy, which we will write more physically shortly. But it hides
within it a degeneracy that this allowed because of these differing numbers. So these different
numbers have to do with the degree of the polynomial and the value of l that you are using.
So let’s classify this and understand it a little better. So what do we have for the energy?
Remember, the energy divided by the dimensionless factor-- well, to make it dimensionless, z
squared e squared over a 0 kappa squared. We wrote actually that e divided by this quantity,
which has units of energy, was kappa squared.
So kappa squared now, kappa is 1 over 2n. So when we substitute here, we get e is equal to
minus z squared e squared over 2a 0 1 over n squared. It’s probably the most famous formula
that you certainly have studied in high school, the 1 over n squared of the energy levels of the
hydrogen atom.
The units are nice. There’s for z equals to 1, there’s the e squared over 2a 0 that we
mentioned a little while ago as giving you the characteristic energy. And e squared over a 0
was 27.2 EV. And therefore, e squared over 2 a 0 is the famous 13.6 EV.

L22.5 Energy eigenstates of hydrogen (12:24)

MITOCW | watch?v=Z4CSAWrzguY
PROFESSOR: Solutions can be organized. One way to do it, it’s not the standard way, is with plotting n here
and l here, and you have 0, 1, 2, 3, 1, 2, 3. You have all this points. Remember, every point
this allowed. Every integer combination is allowed.
All those are energy levels of the hydrogen atom, but now you can see that this point, when
both are 0, corresponds to n equal to 1. Because if n and l are 0, n is equal to 1, and there’s
just one solution with n equal to 1. These two points here, when l is equal to 1 and n equals 0,
with n is equal 1 and l equals 0, represent the two possibilities that realize n equals to 2. n
equals to 2 is realized by having 1 and 0 or 1 and 0, two values.
Similarly, there are three things with n equal to 3, four things-- my graph is not that great-- with
n equal to 4, and more and more states. So for each n you have that n plus l is equal to n
minus 1. And l can never exceed n minus 1, and that’s physically quite something that people
remember. But also n cannot exceed n minus 1 or 0, both are there, limited by these
quantities.
So if you have some n, you will have l and n, for example, for some quantum number n. You
will have l equals 0 and n would be n minus 1. That would work out. l plus n would be n minus
1, or 1 and n minus 2, or all the things up to n minus 1 and 0. So they take turns. They have to
add up to n minus 1.
So let’s plot. Let’s actually, we can go here. We don’t have too much more to say at this
moment. So let’s have this. We can do a little counting that is interesting, and I’ll count the
number of states for a given n.
So for example, for n equals to 1, what can we have? We said, l equals 0, and capital N is
equal to 0 as well, and that’s one state for n equals 2. What can you have? n equals to 2, you
could have l equals 1, or l equals 0. So l equals 1, or l equals 0.
And how many states do we have here? Well, l equals 1 can have m equals 1, 0, and minus 1.
Remember, the m values is another label for states. Those are different states. So here, there
are 3 states, plus 1 state, 3 plus 1 states, that’s 4. n equals 3 will have l equals 2, l equals 1,
and l equals 0, which is 5 states plus 3 states plus 1 state, which is 9 states, and that’s 3
squared. And 4 was actually 2 squared, and if you go on to n you will have n square states.
Something that perhaps you could try to count, and show that that’s true.
So what are our quantum numbers for the states of hydrogen? Well, our quantum numbers
are, it’s our choice, but physically we want to understand them each intuitively. So here we go.
One most important quantum number, and its name says so, is principle quantum number. So
the quantum numbers of hydrogen, and the first important thing is n. We definitely cannot do
away with n. It fixes our energies. And now we have a possibility.
We look at this and we say, yeah well, I actually I either need to determine what is l or what is
n. So it doesn’t even come close. Physicists will not say, oh, I want to describe the quantum
number by the degree of the polynomial inside the solution. No, physicists will say, I want to
use the angular momentum. And certainly, if you know l, and you know n, you know capital N.
So capital N is a funny number. It has to do with the degree of the polynomial that shows up in
between this leading behavior and that exponential behavior, very interesting, but not directly
physical. The l, however, is directly associated to an observable angular momentum. So to
describe the state that I have here, if I give you n and l, you can see that you determine which
state you are.
So the second quantum number is going to be l, and the third quantum number is
unavoidable. It’s the z component of angular momentum, should be m. That’s also physical.
We should not skip it. So these are our quantum numbers, and they fix capital N, in case
you’re interested, as n minus l plus 1, and that’s interesting information.
So let’s recall our variables. OK, a rho is here. That’s very nice. So rho is 2 kappa z over a
naught r, but now we know what kappa is. Kappa is 1 over 2n. So actually, the rho variable is
tailored to the quantum numbers. It’s just Zr over n a naught, where n is the principle quantum
number.
So back to the solution. You see, we have to recap quickly. Psi nlm is equal to U of the energy
of the radial equation-- so n and l is sufficient for that-- over r Ylm. Or the U is the thing that we
had here, Ul, and now it has an energy into it. So it’s a rho to the l plus 1, still r and rho up to
numbers. So this is like. A rho, a Wnl if we wish, of rho e to the minus rho, and Ylm theta phi.
Well, let’s write one more equation, and then finish. So just to give the feeling of this solution,
what does that give you? Rho to the l, a polynomial of rho, which is a polynomial of degree n.
n, which is little n minus l plus 1 times e to the minus rho Ylm. It’s important for you to see the
whole solution. This is the whole solution of the hydrogen atom.
I’ll write it in one more way. A, a constant, because this is similar. Rho, well, rho is, in terms of
units, at least has r over a naught to the l. Here it is a polynomial in r over a naught of degree.
Little n minus l plus 1, and this polynomial, we could make a whole study of it.
These are Laguerre polynomials. We will not look into them in this course. You may do it in a
more advanced course. It’s interesting, but it’s better to just get an intuition as to what’s
happening here. There is an e to the minus rho, which is interesting to have fully.
So this is e to the minus Zr over n a naught, and there’s a Ylm of theta and phi. So this is your
whole solution for the hydrogen atom. We should write the simplest one psi 1, 0, 0, n equals 1,
l equals 0, m equals 0, spherically symmetric. Here it is, 1 over pi a cube, e to the minus r over
a naught For the KZ is equal to 1. Ground state of hydrogen.

  • 18
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值