AI绘画软件Stable Diffusion详解教程(9):图生图进阶篇(局部替换)

本篇介绍一下图生图的局部绘制模式,主要功能是对图片的某一个区域进行替换。

一、进入局部绘制标签页

二、局部替换

1.替换涂抹的区域

重要参数说明:

绘制蒙版内容,即只重绘手工涂抹的区域;

这时又有一个绘图区域的选项,如果选择“仅蒙版”,则原图尺寸大小不变,只重绘涂抹的蒙版区域,如果选择“全图”,会按照给定的像素生成新的图片,空缺区域自动填充。生成效果如下:

仅蒙版:

全图:

2.替换涂抹的区域之外的部分

我们可以看到,除了涂抹的那部分头发区域外,其它区域全部被重绘了。

### 使用 Stable Diffusion 实现像融合 #### 像融合的概念 像融合是指将两个或多个源像的信息结合起来,形成一个新的合成像的过程。对于 AI 绘画工具如 Stable Diffusion 而言,这一过程可以通过特定的技术手段来完成。 #### 方法概述 为了在 Stable Diffusion 中实现高质量的人像写真背景像融合效果,通常采用的是基于蒙版的重绘技术。具体来说,就是通过上传一张原始片以及对应的蒙版遮罩来进行操作[^3]。 #### 步骤详解 当准备进入 SD (Stable Diffusion)界面时: - **上传素材** 用户需先准备好要处理的照片及其相应的二值化掩模(即黑白两色表示哪些区域保留原样而哪些部分允许修改),之后依次点击界面上方菜单中的“上传重绘蒙版”,并按照提示分别加载待编辑的真实照片和个人物轮廓所构成的选择性更新模板文件。 - **参数调整** 接下来是对一些必要的选项做出设定,比如迭代次数、风格倾向度量等超参;这些设置直接影响最终输出作品的艺术性和逼真程度。值得注意的是,不同的应用场景可能需要微调不同类型的参数组合以达到最佳视觉呈现结果。 - **执行成** 完成上述准备工作后即可启动算法运行按钮等待片刻直至新版本的画面渲染完毕。期间系统会依据给定条件自动计算最优解路径从而创造出既保持原有特征又融入全新元素的理想型态。 ```python from diffusers import StableDiffusionInpaintPipeline, EulerAncestralDiscreteScheduler import torch from PIL import Image, ImageOps pipeline = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", scheduler=EulerAncestralDiscreteScheduler(beta_start=0.00085, beta_end=0.012), revision="fp16", torch_dtype=torch.float16, ).to("cuda") image = Image.open("./data/inpaint.png") mask_image = Image.open("./data/mask.png").convert('L') output = pipeline(prompt="A fantasy landscape with a castle on top of the mountain.", image=image, mask_image=mask_image) output.images[0].save('./result/output_fantasy_castle.jpg') ``` 这段 Python 代码展示了如何利用预训练好的 Stable Diffusion inpainting 模型进行带蒙版引导的内容替换任务。其中 `prompt` 参数定义了希望得到的目标场景描述语句,而输入的两张片则分别是底片和覆盖在其上的不透明度指示器——用来指定哪一部分应该被重新绘制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数智前沿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值