要想在大模型的基础上打造垂直行的的应用,可以使用蒸馏、微调、知识库等方法,搭建企业内部的大模型,保障信息安全,降低算力投入。
本篇文章主要介绍使用RAG来搭建企业知识库的各种方法,供各位研究参考,内容会根据面世的部署方法持续更新,所以建议朋友们收藏查阅。
一、常用RAG部署方法及其区别
目前常见的用来部署RAG的方法有:Dify、RAGFlow、QAnything、FastGPT 和 MaxKB。下面是它们的区别及其适合的应用场景。
1. Dify
-
特点:
-
低代码 AI 应用开发平台,支持构建多种 AI 应用(如问答系统、聊天机器人等)。
-
支持自定义模型集成(如 OpenAI、Hugging Face 等)。
-
提供灵活的工作流设计和 API 接口。
-
-
适用场景:
-
需要快速构建和定制 AI 应用的企业。
-
适合开发者或技术团队,支持复杂场景和深度定制。
-
适合中大型企业,支持大规模数据和高并发场景。
-
-
优势:
-
扩展性强,支持多种模型和工具集成。
-
提供低代码开发平台,适合快速迭代。
-
-
局限性:
-
部署和维护复杂度较高,需要技术团队支持。
-
2. RAGFlow
-
特点:
-
专注于 RAG 应用的构建和优化,提供高性能的语义检索和生成能力。
-
支持与多种预训练模型(如 OpenAI、Hugging Face)的深度集成。
-
优化 RAG 模型的检索效果和生成质量。
-
-
适用场景:
-
需要高性能 RAG 应用的企业,尤其是对语义检索和生成质量要求较高的场景。
-
适合中大型企业,支持大规模数据和高并发场景。
-
-
优势:
-
高性能,专注于 RAG 模型的优化。
-
支持大规模数据和高并发场景。
-
-
局限性:
-
功能较为专一,不支持其他类型的 AI 应用。
-
3. QAnything
-
特点:
-
专注于问答系统的构建,支持多种数据源(如文档、数据库等)的集成。
-
提供开箱即用的问答功能,支持快速部署。
-
支持与多种模型(如 OpenAI、Hugging Face)的集成。
-
-
适用场景:
-
需要快速搭建问答系统的企业。
-
适合中小型企业或非技术团队,支持轻量级应用。
-
-
优势:
-
部署简单,适合快速上手。
-
支持多种数据源,灵活性较高。
-
-
局限性:
-
功能较为固定,扩展性有限。
-
4. FastGPT
-
特点:
-
基于 GPT 模型的快速问答系统,支持开箱即用的问答功能。
-
提供简单的 API 接口,便于集成到现有系统中。
-
支持与 OpenAI 等模型的集成。
-
-
适用场景:
-
需要快速搭建基于 GPT 的问答系统的企业。
-
适合中小型企业或非技术团队,支持轻量级应用。
-
-
优势:
-
部署简单,适合快速验证和轻量级应用。
-
提供简单的 API 接口,便于集成。
-
-
局限性:
-
功能较为固定,扩展性有限。
-
5. MaxKB
-
特点:
-
专注于知识库管理和问答系统搭建,提供开箱即用的解决方案。
-
支持与 OpenAI、Hugging Face 等模型的集成。
-
提供图形化界面,适合非技术用户使用。
-
-
适用场景:
-
需要快速搭建轻量级知识库和问答系统的企业。
-
适合中小型企业或非技术团队,支持轻量级应用。
-
-
优势:
-
部署简单,适合非技术用户使用。
-
提供图形化界面,便于管理知识库。
-
-
局限性:
-
功能较为固定,扩展性有限。
-
6.DB - GPT
特点:一个开源的 AI 原生数据应用开发框架,构建了大模型领域的基础设施,具备多模型管理、Text2SQL 效果优化、RAG 框架及优化、Multi - Agents 框架协作、AWEL(智能体工作流编排)等多种技术能力。
适用场景:适用于围绕数据库构建大模型应用的场景,可用于构建企业报表分析、业务洞察等生成式 BI 应用,以及知识类应用等。
优势:让基于数据库和模型搭建专属应用更简单,提供了完整的微调框架,实现与项目的无缝打通,在 Text2SQL 任务上有较高准确率,还提供了数据驱动的自进化 Multi - Agents 框架和数据工厂,可对接各类数据源。
局限性:在处理特定复杂查询时,示例集可能不足以覆盖所有情况,在高并发事务和超大规模数据集管理上,可能存在计算资源瓶颈。
7.LangChain - Chatchat
特点:融合先进语言模型与实用应用框架,基于 Langchain 思想,结合本地知识库提供精准问答服务,支持多种先进模型,能离线部署且对中文环境支持良好,提供多样化检索机制、强大的 Agent 能力和全面的功能覆盖,还有用户友好的 WebUI。
适用场景:适用于企业内部知识管理系统、客户服务聊天机器人、教育领域辅助教学工具等需要高级自然语言理解和生成的场景。
优势:广泛的模型兼容性,既能使用开源模型离线运行,又能接入在线 API;支持多种检索算法,适用于复杂查询需求;针对部分模型进行了深度优化,提升了工具调用的理解和执行效率;功能全面,界面直观,可定制化程度高。
局限性:对于一些非常专业或特殊领域的知识处理,可能需要进一步调整和优化模型及知识库。
8.Quivr
特点:不仅是一个 RAG 框架,更是强大的 “大脑第二皮层” 工具,强调知识的组织、探索和生成,支持多模态数据,内置高度可定制的 RAG 流程,提供丰富知识管理工具和 “Prompt Chaining” 功能,拥有简洁直观的用户界面和插件生态系统。
适用场景:适用于企业构建全面的知识库,能应对包括图像、音频等多模态数据的场景,以及需要灵活调整检索策略、提示词工程等关键环节以优化问答效果的场景。
优势:多模态支持使知识库更全面,知识管理能力强大,可定制的 RAG 流程和 “Prompt Chaining” 功能能满足复杂知识应用需求,用户界面友好,插件生态系统有扩展性。
局限性:作为较新的项目,插件生态系统可能不够完善,对于一些复杂的、特定领域的多模态数据处理,可能需要进一步开发和优化。
9.Open WebUI(前身为 Ollama WebUI)
特点:可扩展、功能丰富、用户友好的自托管 Web 界面,支持多种 LLM 运行器,设计用于完全离线运行,支持 Docker 和 Kubernetes 部署,具备模型构建器、本地 RAG 集成、Web 搜索和浏览功能、图像生成集成等功能,提供离线操作、多模型支持、插件框架、多语言支持等特性。
适用场景:适用于企业内部智能助手、教育培训、个人助手、研究开发等场景,尤其是对数据安全和隐私要求较高,需要离线操作的环境。
优势:离线操作确保数据安全隐私,多模型支持提供丰富交互体验,插件框架可集成自定义逻辑和 Python 库,多语言支持满足全球用户需求,持续更新保证拥有最新功能。
局限性:虽然支持多种功能,但在某些特定专业领域的深度应用可能不如专门的领域模型,对于一些复杂的在线交互功能可能支持有限,因为主要侧重于离线使用。
二、总结与适用场景对比
Dify
工具特点:低代码 AI 应用开发平台,支持多种 AI 应用和自定义模型集成。
适用场景:需要快速构建和定制 AI 应用的企业,适合中大型企业和技术团队。
RAGFlow
工具特点:专注于高性能 RAG 应用,优化语义检索和生成质量。
适用场景:需要高性能 RAG 应用的企业,适合中大型企业和高并发场景。
QAnything
工具特点:专注于问答系统,支持多种数据源和快速部署。
适用场景:需要快速搭建问答系统的企业,适合中小型企业或非技术团队。
FastGPT
工具特点:基于 GPT 模型的快速问答系统,支持开箱即用的问答功能。
适用场景:需要快速搭建基于 GPT 的问答系统的企业,适合中小型企业或非技术团队。
MaxKB
工具特点:专注于知识库管理和问答系统搭建,提供图形化界面。
适用场景:需要快速搭建轻量级知识库和问答系统的企业,适合中小型企业或非技术团队。
三、选择建议
Dify:适合需要深度定制和扩展性的企业,尤其是中大型企业和技术团队。
RAGFlow:适合对语义检索和生成质量要求较高的企业,尤其是中大型企业和高并发场景。
QAnything:适合需要快速搭建问答系统的企业,尤其是中小型企业或非技术团队。
FastGPT:适合需要快速搭建基于 GPT 的问答系统的企业,尤其是中小型企业或非技术团队。
MaxKB:适合需要快速搭建轻量级知识库和问答系统的企业,尤其是中小型企业或非技术团队。