机器学习——逻辑回归(Logistic Regression)

算法描述:

Logistic Regression Algorithm
初始化 ω 0 {\omega _0} ω0
For t = 0 , 1 , 2 , ⋯ t=0,1,2, \cdots t=0,1,2,

      1.计算梯度方向:

                         ∇ E i n ( ω t ) = 1 N ∑ n = 1 N θ ( − y n ω t T x n ) ( − y n x n ) \nabla {E_{in}}({\omega _t}) = \frac{1}{N}\sum\limits_{n = 1}^N {\theta ( - {y_n}\omega _t^T{x_n})( - {y_n}{x_n})} Ein(ωt)=N1n=1Nθ(ynωtTxn)(ynxn)

      2.更新:

                         ω t + 1 ← ω t − η ∇ E i n ( ω t ) {\omega _{t + 1}} \leftarrow {\omega _t} - \eta \nabla {E_{in}}({\omega _t}) ωt+1ωtηEin(ωt)

Until ∇ E i n ( ω t + 1 ) = 0 \nabla {E_{in}}({\omega _{t + 1}}) = 0 Ein(ωt+1)=0,或者足够的次数

这里的目标函数: f ( x ) = P ( + 1 ∣ x ) ∈ [ 0 , 1 ] f(x) = P( + 1\left| x \right.) \in \left[ {0,1} \right] f(x)=P(+1x)[0,1] ,用于二分类,则当 f ( x ) &gt; 0.5 f(x) &gt; 0.5 f(x)>0.5 ,为+1;当 f ( x ) &lt; 0.5 f(x) &lt; 0.5 f(x)<0.5 ,为-1。

计算过程:


Logistic Function:

θ ( s ) = e s 1 + e s = 1 1 + e − s \theta (s) = \frac{{{e^s}}}{{1 + {e^s}}} = \frac{1}{{1 + {e^{ - s}}}} θ(s)=1+eses=1+es1

图像如下,


在这里插入图片描述

该函数的特性:

  • 定义域 ( − ∞ , + ∞ ) ( - \infty , + \infty ) (,+)
  • 值域 ( 0 , 1 ) (0,1) (0,1)
  • 在定义域内是smooth,monotonic,sigmiod的
  • θ ( s ) = 1 − θ ( − s ) \theta (s) = 1 - \theta ( - s) θ(s)=1θ(s)
  • d θ ( s ) d s = θ ( s ) ( 1 − θ ( s ) ) \frac{{d\theta (s)}}{{ds}} = \theta (s)(1 - \theta (s)) dsdθ(s)=θ(s)(1θ(s))

logistic函数用在逻辑回归里为,
h ( x ) = 1 1 + exp ⁡ ( − ω T x ) h(x) = \frac{1}{{1 + \exp ( - {\omega ^T}x)}} h(x)=1+exp(ωTx)1

下面根据极大似然原理(Maximum Likelihood) 来计算逻辑回归的参数更新式。

现有目标函数如下,
f ( x ) = P ( + 1 ∣ x ) ⇔ P ( y ∣ x ) = { f ( x ) f o r y = + 1 1 − f ( x ) f o r y = − 1 f(x) = P( + 1\left| x \right.) \Leftrightarrow P(y\left| x \right.) = \left\{ \begin{array}{l} f(x){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} y = + 1{\kern 1pt} \\ 1 - f(x){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} for{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} y = - 1 \end{array} \right. f(x)=P(+1x)P(yx)={f(x)fory=+11f(x)fory=1

假设现在有资料集 D = { ( x 1 , ◯ ) , ( x 2 , × ) , ⋯ &ThinSpace; , ( x N , × ) } D = \{ ({x_1},\bigcirc ),({x_2}, \times ), \cdots ,({x_N}, \times )\} D={(x1,),(x2,×),,(xN,×)}

则通过h产生数据集D的可能性为:
P ( x 1 ) h ( x 1 ) × P ( x 2 ) ( 1 − h ( x 2 ) ) × ⋯ × P ( x N ) ( 1 − h ( x N ) ) P({x_1})h({x_1}) \times P({x_2})(1 - h({x_2})) \times \cdots \times P({x_N})(1 - h({x_N})) P(x1)h(x1)×P(x2)(1h(x2))××P(xN)(1h(xN))

通常由目标函数f产生数据集D的概率是很大的 (极大似然的思想),当 h ≈ f h \approx f hf时,由h产生D的概率也是非常大的,即,
g ≈ arg ⁡ max ⁡ h l i k e l i h o o d ( h ) g \approx \mathop {\arg \max }\limits_h {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} likelihood(h) ghargmaxlikelihood(h)

这里 h ( x ) = θ ( ω T x ) h(x) = \theta ({\omega ^T}x) h(x)=θ(ωTx),又有 1 − h ( x ) = h ( − x ) 1 - h(x) = h( - x) 1h(x)=h(x),所以,
l i k e l i h o o d ( h ) = P ( x 1 ) h ( x 1 ) × P ( x 2 ) ( 1 − h ( x 2 ) ) × ⋯ × P ( x N ) ( 1 − h ( x N ) ) = P ( x 1 ) h ( x 1 ) × P ( x 2 ) h ( − x 2 ) × ⋯ × P ( x N ) h ( − x N ) = P ( x 1 ) h ( y 1 x 1 ) × P ( x 2 ) h ( y 2 x 2 ) × ⋯ × P ( x N ) h ( y N x N ) \begin{array}{l} likelihood(h) = P({x_1})h({x_1}) \times P({x_2})(1 - h({x_2})) \times \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots \times P({x_N})(1 - h({x_N}))\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = P({x_1})h({x_1}) \times P({x_2})h( - {x_2}) \times \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots \times P({x_N})h( - {x_N})\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = P({x_1})h({y_1}{x_1}) \times P({x_2})h({y_2}{x_2}) \times \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots \times P({x_N})h({y_N}{x_N}) \end{array} likelihood(h)=P(x1)h(x1)×P(x2)(1h(x2))××P(xN)(1h(xN))=P(x1)h(x1)×P(x2)h(x2)××P(xN)h(xN)=P(x1)h(y1x1)×P(x2)h(y2x2)××P(xN)h(yNxN)

对于每个不同的h而言, P ( x i ) P({x_i}) P(xi)都是不变的,那么就有,
l i k e l i h o o d ( h ) ∝ ∏ n = 1 N h ( y n x n ) likelihood(h) \propto \prod\limits_{n = 1}^N {h({y_n}{x_n})} likelihood(h)n=1Nh(ynxn)

ω \omega ω表示h,有,
max ⁡ ω l i k e l i h o o d ( h ) ∝ ∏ n = 1 N θ ( y n ω T x n ) \mathop {\max }\limits_\omega likelihood(h) \propto \prod\limits_{n = 1}^N {\theta ({y_n}{\omega ^T}{x_n})} ωmaxlikelihood(h)n=1Nθ(ynωTxn)

取对数 (变连乘为连加),加负号 (变最大化为最小化),再取均值,有,
min ⁡ ω 1 N ∑ n = 1 N − ln ⁡ θ ( y n ω T x n ) = min ⁡ ω 1 N ∑ n = 1 N ln ⁡ ( 1 + exp ⁡ ( − y n ω T x n ) ) = min ⁡ ω 1 N ∑ n = 1 N e r r ( ω , x n , y n ) ⎵ E i n ( ω ) \begin{array}{l} \mathop {\min }\limits_\omega \frac{1}{N}\sum\limits_{n = 1}^N { - \ln \theta ({y_n}{\omega ^T}{x_n})} \\ = \mathop {\min }\limits_\omega \frac{1}{N}\sum\limits_{n = 1}^N {\ln (1 + \exp ( - {y_n}{\omega ^T}{x_n}))} \\ {\kern 1pt} = \mathop {\min }\limits_\omega \frac{1}{N}\underbrace {\sum\limits_{n = 1}^N {err(\omega ,{x_n},{y_n})} }_{{E_{in}}(\omega )} \end{array} ωminN1n=1Nlnθ(ynωTxn)=ωminN1n=1Nln(1+exp(ynωTxn))=ωminN1Ein(ω) n=1Nerr(ω,xn,yn)

上式,就是逻辑回归里的误差衡量方式——交叉熵误差(Cross-Entropy Error),即,
e r r ( ω , x , y ) = ln ⁡ ( 1 + exp ⁡ ( − y ω x ) err(\omega ,x,y) = \ln (1 + \exp ( - y\omega x) err(ω,x,y)=ln(1+exp(yωx)

根据凸函数的最小化原理,令 ∇ E i n ( ω ) = 0 \nabla {E_{in}}(\omega ) = 0 Ein(ω)=0,下面计算梯度,
E i n ( ω ) = 1 N ∑ n = 1 N ln ⁡ ( 1 + exp ⁡ ( − y n ω T x n ⏞ ◯ ) ⎵ Δ ) \begin{array}{l} {E_{in}}(\omega ) = \frac{1}{N}\sum\limits_{n = 1}^N {\ln (\underbrace {1 + \exp (\overbrace { - {y_n}{\omega ^T}{x_n}}^\bigcirc )}_\Delta )} \\ {\kern 1pt} \end{array} Ein(ω)=N1n=1Nln(Δ 1+exp(ynωTxn ))

∂ E i n ( ω ) ∂ ω i = 1 N ∑ n = 1 N ( ∂ ln ⁡ ( Δ ) ∂ Δ ) ( ∂ ( 1 + exp ⁡ ( ◯ ) ) ∂ ◯ ) ( ∂ − y n ω T x n ∂ ω i ) = 1 N ∑ n = 1 N ( 1 Δ ) ( exp ⁡ ( ◯ ) ) ( − y n x n , i ) = 1 N ∑ n = 1 N ( exp ⁡ ( ◯ ) 1 + exp ⁡ ( ◯ ) ) ( − y n x n , i ) = 1 N ∑ n = 1 N θ ◯ ( − y n x n , i ) \begin{array}{l} \frac{{\partial {E_{in}}(\omega )}}{{\partial {\omega _i}}} = \frac{1}{N}\sum\limits_{n = 1}^N {(\frac{{\partial \ln (\Delta )}}{{\partial \Delta }})} (\frac{{\partial (1 + \exp (\bigcirc ))}}{{\partial \bigcirc }})(\frac{{\partial - {y_n}{\omega ^T}{x_n}}}{{\partial {\omega _i}}})\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{1}{N}\sum\limits_{n = 1}^N {(\frac{1}{\Delta })} (\exp (\bigcirc ))( - {y_n}{x_{n,i}})\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{1}{N}\sum\limits_{n = 1}^N {(\frac{{\exp (\bigcirc )}}{{1{\rm{ + }}\exp (\bigcirc )}})} ( - {y_n}{x_{n,i}})\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \frac{1}{N}\sum\limits_{n = 1}^N {\theta \bigcirc } ( - {y_n}{x_{n,i}}) \end{array} ωiEin(ω)=N1n=1N(Δln(Δ))((1+exp()))(ωiynωTxn)=N1n=1N(Δ1)(exp())(ynxn,i)=N1n=1N(1+exp()exp())(ynxn,i)=N1n=1Nθ(ynxn,i)

即,
∇ E i n ( ω ) = 1 N ∑ n = 1 N θ ( − y n ω T x n ) ( − y n x n ) = 0 \nabla {E_{in}}(\omega ) = \frac{1}{N}\sum\limits_{n = 1}^N {\theta ( - {y_n}{\omega ^T}{x_n})( - {y_n}{x_n})} = 0 Ein(ω)=N1n=1Nθ(ynωTxn)(ynxn)=0

上式不存在闭式解(closed-form solution),因为,把这里的 θ ( ⋅ ) \theta ( \cdot ) θ()看作是 − y n x n - {y_n}{x_n} ynxn的权重,则整个梯度式子可看作是以 θ ( ⋅ ) \theta ( \cdot ) θ()为权重的关于 − y n x n - {y_n}{x_n} ynxn的加权平均,所以只有当所有的 θ ( ⋅ ) = 0 \theta ( \cdot ) = 0 θ()=0成立时, ∇ E i n ( ω ) = 0 \nabla {E_{in}}(\omega ) = 0 Ein(ω)=0
1.所有 θ ( ⋅ ) = 0 \theta ( \cdot ) = 0 θ()=0 ,当且仅当 y n ω T x n ≫ 0 {y_n}{\omega ^T}{x_n} \gg 0 ynωTxn0 ,即该数据集线性可分,一旦数据集线性不可分,则上述梯度就不可能为0
2.权重 : θ ( ⋅ ) = 0 \theta ( \cdot ) = 0 θ()=0是关于 ω \omega ω的一个非线性方程,不容易得出闭式解

所以,这里的参数更新采用的是迭代优化解(Iterative Optimization),用梯度下降法求解函数的最小化问题,
ω t + 1 ← ω t − η ∇ E i n ( ω t ) {\omega _{t + 1}} \leftarrow {\omega _t} - \eta \nabla {E_{in}}({\omega _t}) ωt+1ωtηEin(ωt)

实际应用:

数据特征集D为
x = [ 1 1 ⋯ 1 x 11 x 21 ⋯ x n 1 x 12 x 22 ⋯ x n 2 ⋮ ⋮ ⋮ ⋮ x 1 d x 2 d ⋯ x n d ] ⎵ ( d + 1 ) × N x = \underbrace {\left[ {\begin{array}{} 1&amp;1&amp; \cdots &amp;1\\ {{x_{11}}}&amp;{{x_{21}}}&amp; \cdots &amp;{x{}_{n1}}\\ {{x_{12}}}&amp;{{x_{22}}}&amp; \cdots &amp;{x{}_{n2}}\\ \vdots &amp; \vdots &amp; \vdots &amp; \vdots \\ {{x_{1d}}}&amp;{x{}_{2d}}&amp; \cdots &amp;{x{}_{nd}} \end{array}} \right]}_{(d + 1) \times N} x=(d+1)×N 1x11x12x1d1x21x22x2d1xn1xn2xnd

对应的标签集为:

y = [ y 1 y 2 ⋮ y n ] ⎵ N × 1 y = \underbrace {\left[ {\begin{array}{} {{y_1}}\\ {{y_2}}\\ \vdots \\ {{y_n}} \end{array}} \right]}_{N \times 1} y=N×1 y1y2yn

则梯度的计算如下:

A = θ ( − y n . ∗ ( ω T x n ⏞ 1 × N ) ) ⎵ 1 × N b = − y n . ∗ x n ⎵ ( d + 1 ) × N \begin{array}{l} A = \underbrace {\theta ( - {y_n}. * (\overbrace {{\omega ^T}{x_n}}^{1 \times N}))}_{1 \times N}\\ b = \underbrace { - {y_n}. * {x_n}}_{(d + 1) \times N} \end{array} A=1×N θ(yn.(ωTxn 1×N))b=(d+1)×N yn.xn

∇ E i n ( ω ) = A 1 ⎵ ( 常 数 ) b 1 ⎵ ( d + 1 ) × 1 + A 2 b 2 + ⋯ + A N b N = b ⎵ ( d + 1 ) × N [ A 1 A 2 ⋮ A N ] ⎵ N × 1 \begin{array}{l} \nabla {E_{in}}(\omega ) = \underbrace {{A_1}}_{(常数)}\underbrace {{b_1}}_{(d + 1) \times 1} + {A_2}{b_2} + \cdots + {A_N}{b_N}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \underbrace b_{(d + 1) \times N}\underbrace {\left[ {\begin{array}{} {{A_1}}\\ {{A_2}}\\ \vdots \\ {{A_N}} \end{array}} \right]}_{N \times 1} \end{array} Ein(ω)=() A1(d+1)×1 b1+A2b2++ANbN=(d+1)×N bN×1 A1A2AN

实际应用中,一般用线性回归求初值 ,然后再用PLA/pocket/logistic regression等方法,一般logistic regression效果要好于pocket。

随机梯度(Stochastic Gradient Descent, SGD)的使用:

以上计算的梯度的时候,是计算了在所有点处的梯度和然后再平均,这里的平均的概念可以用随机的一个梯度值来近似代替,即,
ω t + 1 ← ω t + η θ ( − y n ω t T x n ) ( y n x n ) ⎵ − ∇ e r r ( ω t , x n , y n ) {\omega _{t + 1}} \leftarrow {\omega _t} + \eta \underbrace {\theta ( - {y_n}\omega _t^T{x_n})({y_n}{x_n})}_{ - \nabla err({\omega _t},{x_n},{y_n})} ωt+1ωt+ηerr(ωt,xn,yn) θ(ynωtTxn)(ynxn)

随机梯度的使用体现了一个在线学习思想,即每来一个数据,就可以进行一次参数更新。

Pros: 计算代价低,适合数据量大以及在线学习的场景
Cons: 不稳定。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值