前面的文章里我们对可以应用到测试中的AI技术做了整体介绍,详细介绍了OpenCV技术,本文我们继续为大家介绍OCR技术和神经网络。
OCR第二大应用非常广泛的是OCR技术,OCR技术需要我们在界面的文字上进行相应的处理。刚才我们讲的OpenCV主要是图像的处理,OCR主要是文字的处理。
OCR-技术组成OCR的技术组成和计算机视觉的发展过程一样,它也属于图像处理的一个子分支,它的处理首先是由图像进行相应的处理,然后进行版面分析,版面分析之后,进行版面的字符的识别、字符的分割、语义的处理,然后进行版面的还原,然后进行格式化输出。
OCR-图像处理OCR图像处理可以通过去噪声、平滑等处理方式进行一个基本的处理。
OCR-版面理解通过版面理解可以把版面的调用顺序、逻辑关系进行一个基本的理解的处理。
OCR-字符分割通过字符分割的技术,我们可以识别出字的元素组成,可以通过行的分割、字的分割去识别哪些字和哪些字相互组合是有一定含义的。
OCR-字符识别通过字符的识别我们去识别出字所代表的含义,英文的、中文的或者其他外文的都可以通过基本的字母表或字符表进行一个处理。
OCR-语义处理通过语义处理,OCR可以将一个正确的结果展示出来。像我们下面举的这个例子,每个字会有不同的识别结果,我们通过语义的自动化处理能够识别出它最终的语义哪一个是正确的。
OCR-格式化输出最后是进行整个字符识别后的格式化的输出,我们将识别之后的内容形成一个完整的字符的文本,然后输出出来。
算法-神经网络
神经网络是我们目前在AI领域用的最核心的方法。在算法层面,机器学习(深度学习)大体是经历了这么几个过程:
第一次兴起(1958年):感知机,由于没有引入非线性,不能求解异或问题。第二次兴起(1986年):将BP(Back Propagation)算法用于ANN的训练过程。第三次兴起(2012年):深度卷积神经网络的兴起,一直到现在。
后面的文章中我们将继续为大家介绍卷积神经网络、数据集以及AI技术在其他方面和测试相关的创新,欢迎大家继续关注。