自动化测试与质量控制技术综述创作声明: AI创作

自动化测试与质量控制技术综述

创作声明: AI创作

 

随着工业自动化技术的快速发展,自动化测试与质量控制已成为保障产品质量、提高生产效率的关键环节。本文综述了近年来自动化测试与质量控制技术的研究进展,重点探讨了机器视觉检测、自动化测试平台、智能故障诊断等方面的最新成果与应用。通过对比分析不同技术的优缺点,本文提出了一种集成多种技术的自动化测试与质量控制系统框架,并对未来的发展趋势进行了展望。本文可为相关领域的研究人员和工程技术人员提供参考。

关键词:自动化测试;质量控制;机器视觉;故障诊断;人工智能






 

一、绪论

工业自动化是现代制造业的发展方向,其核心在于利用自动化技术替代人工,实现生产过程的自动控制和优化[1]。而自动化测试与质量控制则是工业自动化不可或缺的重要组成部分,直接影响着产品的质量和生产效率[2]。传统的测试与质量控制主要依靠人工完成,存在效率低、准确性差、易受主观因素影响等问题[3]。随着计算机技术、人工智能等领域的快速发展,自动化测试与质量控制技术取得了长足进步,在工业生产中得到了广泛应用[4]。

本文将对自动化测试与质量控制技术的研究现状进行综述,重点关注机器视觉检测、自动化测试平台、智能故障诊断等方面的最新进展。通过梳理和分析国内外相关文献,本文将系统地介绍各种技术的基本原理、关键技术、应用现状以及存在的问题,并提出一种集成多种技术的自动化测试与质量控制系统框架,为相关领域的研究和应用提供参考和启示。

二、机器视觉检测技术

机器视觉是利用计算机对图像进行处理和分析,从而实现对目标对象的识别、测量和判断的技术[5]。它可以模拟人眼和大脑的功能,自动完成产品外观缺陷检测、尺寸测量、字符识别等质量控制任务,具有速度快、精度高、稳定性好等优点[6]。近年来,随着图像处理算法和硬件设备的不断发展,机器视觉检测技术得到了广泛的研究和应用。

(一) 传统机器视觉检测技术

传统的机器视觉检测技术主要包括基于阈值分割、边缘检测、模板匹配等方法[7]。这些方法通过设定固定的阈值或模板,将图像中的目标区域提取出来,再根据预设的规则进行缺陷判断或尺寸测量。Patel等[8]提出了一种基于阈值分割的印刷电路板(PCB)缺陷检测方法,通过对PCB图像进行二值化处理,提取出焊盘、导线等区域,再根据面积、周长等特征进行缺陷判断,取得了较好的检测效果。Huang等[9]提出了一种基于边缘检测的玻璃瓶缺陷检测方法,通过Canny算子提取玻璃瓶轮廓,再根据轮廓的连续性和平滑度进行缺陷判断,实现了对玻璃瓶裂纹、异物等缺陷的自动检测。

然而,传统的机器视觉检测技术存在一定的局限性。首先,这些方法往往需要根据具体的应用场景和对象来设计和调整算法参数,泛化能力较差[10]。其次,传统方法对图像质量要求较高,对光照、背景等环境因素比较敏感,鲁棒性不够强[11]。此外,传统方法主要针对简单的缺陷类型和规则,对于复杂的缺陷情况和质量标准,检测效果往往不够理想[12]。

(二)基于深度学习的机器视觉检测技术

近年来,以卷积神经网络(CNN)为代表的深度学习技术在计算机视觉领域取得了突破性进展,也为机器视觉检测技术带来了新的发展机遇[13]。与传统方法相比,基于深度学习的方法具有更强的特征提取和学习能力,能够自动学习图像中的高层语义特征,对复杂缺陷有更好的检测效果[14]。同时,深度学习方法具有较好的泛化能力和鲁棒性,能够适应不同的应用场景和对象[15]。

目前,基于深度学习的机器视觉检测技术已经在工业领域得到了广泛的研究和应用。Ren等[16]提出了一种基于CNN的金属表面缺陷检测方法,通过训练一个端到端的缺陷检测网络,实现了对划痕、凹凸、污渍等多种缺陷的自动检测,平均检测精度达到97.2%。Wang等[17]提出了一种基于区域建议网络(RPN)和CNN的PCB缺陷检测方法,通过RPN生成缺陷候选区域,再用CNN进行缺陷分类和定位,实现了对微小缺陷的精确检测。Liu等[18]提出了一种基于生成对抗网络(GAN)的织物疵点检测方法,通过训练一个正常织物图像的生成器和一个疵点区域的判别器,实现了对织物疵点的自动检测和定位。

尽管基于深度学习的机器视觉检测技术取得了良好的效果,但仍然存在一些问题和挑战。首先,深度学习方法需要大量的缺陷样本数据进行训练,而工业生产中缺陷样本往往比较稀少,样本不均衡问题比较突出[19]。其次,深度学习模型的训练和推理需要较大的计算资源和时间,对实时性要求较高的应用场景可能不太适用[20]。此外,深度学习模型的可解释性较差,检测结果难以进行分析和优化[21]。因此,如何解决样本不均衡问题、提高模型的计算效率和可解释性,是基于深度学习的机器视觉检测技术需要进一步研究的重点方向。

三、自动化测试平台技术

自动化测试平台是集成各种测试仪器、控制设备、数据采集和分析软件等于一体的自动化测试系统,可以根据预设的测试流程和参数,自动完成产品的功能、性能、可靠性等测试任务,具有效率高、准确性好、重复性强等优点[22]。近年来,自动化测试平台技术得到了快速发展,在电子、汽车、航空航天等领域得到了广泛应用。

(一) 虚拟仪器技术

虚拟仪器是利用计算机软件和硬件资源,模拟传统仪器的功能和界面,实现信号采集、分析、显示等功能的技术[23]。与传统仪器相比,虚拟仪器具有灵活、开放、易于扩展等优点,已成为自动化测试平台的重要组成部分。LabVIEW是目前应用最广泛的虚拟仪器开发平台之一,它提供了丰富的库函数和图形化编程环境,可以方便地进行仪器控制、数据采集、信号处理等任务[24]。

近年来,虚拟仪器技术在自动化测试领域得到了广泛的研究和应用。Liu等[25]基于LabVIEW开发了一种电池管理系统(BMS)的自动化测试平台,通过虚拟仪器实现了对BMS的功能、性能、安全性等方面的自动测试,大大提高了测试效率和准确性。Kang等[26]基于PXI总线和LabVIEW开发了一种汽车电子控制单元(ECU)的自动化测试系统,通过虚拟仪器实现了对ECU的输入输出、通信协议、故障诊断等功能的自动测试,有效降低了测试成本和周期。

(二)测试自动化框架

测试自动化框架是一种用于组织、管理和执行自动化测试的软件架构,它定义了测试用例的编写、执行、报告等流程,提供了一系列工具和库函数,可以提高测试的效率和可维护性[27]。目前,主流的测试自动化框架包括关键字驱动框架、数据驱动框架、模块化框架等[28]。

关键字驱动框架是将测试步骤抽象为一系列关键字,再通过关键字的组合来描述测试用例,实现测试逻辑与测试数据的分离[29]。Robot Framework是一种基于Python的关键字驱动测试框架,它提供了丰富的内置关键字和库函数,支持多种测试对象和协议,已在Web、移动、桌面等应用的自动化测试中得到广泛应用[30]。

数据驱动框架是将测试数据与测试脚本分离,通过外部数据文件来驱动测试脚本的执行,实现测试用例的参数化和数据化[31]。TestNG是一种基于Java的数据驱动测试框架,它支持多种数据源(如Excel、CSV、数据库等),可以方便地生成参数化的测试用例,已在单元测试、集成测试等领域得到广泛应用[32]。

模块化框架是将测试脚本划分为多个独立的模块,每个模块负责特定的测试任务,通过模块的组合和调用来实现完整的测试流程[33]。Pytest是一种基于Python的模块化测试框架,它提供了丰富的fixture机制和插件系统,可以方便地进行测试用例的管理和扩展,已在单元测试、接口测试、UI测试等领域得到广泛应用[34]。

近年来,测试自动化框架技术得到了快速发展,在工业自动化测试中得到了广泛应用。Zhang等[35]基于关键字驱动框架开发了一种变压器综合测试平台,通过关键字描述变压器的测试步骤和参数,实现了变压器的电气性能、绝缘性能、温升等测试项目的自动化,大大提高了测试效率和准确性。Chen等[36]基于数据驱动框架开发了一种汽车线束的自动化测试系统,通过Excel文件定义线束的测试数据和判断条件,实现了对线束的导通性、绝缘性、耐压等参数的自动测试,有效降低了测试成本和周期。

(三)智能化测试技术

智能化测试是利用人工智能技术,赋予测试系统智能分析、决策、优化等能力,实现测试过程的自适应和自优化[37]。近年来,机器学习、知识图谱、自然语言处理等人工智能技术在测试领域得到了广泛的研究和应用,为测试自动化平台技术带来了新的发展机遇[38]。

机器学习技术可以从历史测试数据中自动学习测试规则和策略,生成更加全面、高效的测试用例,并根据测试反馈动态调整测试策略[39]。Wang等[40]提出了一种基于强化学习的GUI测试用例生成方法,通过建立GUI状态与测试动作的奖励函数,自动学习最优的测试路径和策略,生成高覆盖率、低冗余的测试用例。Zheng等[41]提出了一种基于深度学习的Android应用缺陷预测方法,通过CNN网络自动提取应用代码的语义特征,预测潜在的缺陷位置和类型,指导测试用例的生成和优化。

知识图谱技术可以将测试领域知识以图谱的形式进行表示和推理,辅助测试用例的设计和分析[42]。Li等[43]提出了一种基于本体的测试知识图谱构建方法,通过定义测试概念、关系、规则等,建立了一个覆盖软件测试全生命周期的知识库,可以支持测试用例的自动生成、测试结果的智能分析等。Gao等[44]提出了一种基于知识图谱的软件缺陷诊断方法,通过构建软件系统、代码、缺陷等实体之间的语义关联,实现了缺陷根因的自动推理和定位,提高了缺陷诊断的效率和准确性。

自然语言处理技术可以将自然语言形式的需求、规格说明等转化为结构化的测试案例,自动化测试过程[45]。Gao等[46]提出了一种基于自然语言处理的测试用例自动生成方法,通过语义角色标注、命名实体识别等技术,自动提取需求文档中的测试元素和约束条件,生成符合语义和语法要求的测试用例。Jiang等[47]提出了一种基于深度学习的缺陷报告自动分类方法,通过LSTM网络自动学习缺陷报告的语义特征,实现缺陷报告的自动分类和优先级划分,提高了缺陷管理的效率和准确性。

智能化测试技术的应用,可以显著提高测试自动化平台的智能化水平和测试效率,但也存在一些问题和挑战。首先,智能化测试技术依赖于大量的历史测试数据和知识库,而这些数据和知识的获取和标注成本较高[48]。其次,智能化测试模型的泛化能力和可解释性有待进一步提高,对于新的被测对象和需求变更,模型的适应性和稳定性可能不够理想[49]。此外,智能化测试技术的应用还需要测试工程师具备一定的人工智能相关知识和技能,对测试团队的能力提出了新的要求[50]。

四、 智能故障诊断技术

在工业生产中,设备和系统的故障诊断是一项重要而复杂的任务,传统的故障诊断主要依靠人工经验和专家知识,存在效率低、主观性强等问题[51]。近年来,人工智能技术在故障诊断领域得到了广泛的研究和应用,形成了智能故障诊断技术,可以自动、快速、准确地实现设备和系统的故障诊断,提高生产效率和产品质量[52]。

(一)基于机器学习的故障诊断技术

机器学习是智能故障诊断的重要技术之一,它可以从历史运行数据中自动学习故障模式和诊断知识,实现故障的自动分类和定位[53]。目前,支持向量机(SVM)、随机森林(RF)、神经网络等机器学习算法在故障诊断中得到了广泛应用[54]。

SVM是一种基于统计学习理论的二分类模型,它通过在高维特征空间中寻找最优分类超平面,实现故障与正常状态的分类[55]。Yang等[56]提出了一种基于SVM的风电机组齿轮箱故障诊断方法,通过提取振动信号的时频域特征,训练SVM模型进行故障分类,实现了对齿轮箱的早期故障诊断,诊断准确率达到了95%以上。

RF是一种基于决策树集成学习的算法,它通过构建多棵决策树并进行投票,实现故障的分类和预测[57]。Liu等[58]提出了一种基于RF的航空发动机故障诊断方法,通过提取发动机传感器数据的统计特征,训练RF模型进行故障分类,实现了对发动机的多种故障模式的准确诊断,诊断准确率达到了98%以上。

神经网络是一种模拟人脑神经元结构和功能的算法,它可以自动学习故障数据中的复杂特征和模式,实现故障的分类和预测[59]。Zhang等[60]提出了一种基于卷积神经网络(CNN)的旋转机械故障诊断方法,通过将振动信号转化为时频图像,训练CNN模型进行故障分类,实现了对轴承、齿轮等部件的多种故障模式的准确诊断,诊断准确率达到了99%以上。

基于机器学习的故障诊断技术具有自适应性强、诊断效率高等优点,但也存在一些局限性。首先,机器学习模型的训练需要大量的标注数据,而工业系统中故障数据的获取和标注成本较高[61]。其次,机器学习模型对数据质量和特征选择较为敏感,噪声干扰和特征冗余等因素都会影响诊断性能[62]。此外,机器学习模型的可解释性较差,诊断结果难以进行分析和优化[63]。因此,如何降低数据标注成本、提高模型的鲁棒性和可解释性,是基于机器学习的故障诊断技术亟待解决的问题。

(二)基于知识的故障诊断技术

基于知识的故障诊断是利用专家经验、设计知识等构建故障诊断知识库,通过知识推理实现故障的定位和分析的技术[64]。基于知识的方法可以显式地表示和利用领域知识,具有推理过程透明、诊断结果可解释等优点[65]。

基于规则的诊断是一种典型的知识驱动方法,它通过if-then形式的规则来描述故障症状与原因之间的因果关系,通过规则匹配和推理实现故障的定位[66]。Zhao等[67]提出了一种基于规则的核电站故障诊断专家系统,通过建立覆盖700多个故障模式的规则库,实现了对核电站的泵、阀等关键设备的快速诊断,大大提高了故障处理效率。

基于案例的诊断是另一种知识驱动方法,它通过收集和存储大量的历史故障案例,在诊断时通过案例相似度匹配,实现故障原因的快速定位[68]。Qi等[69]提出了一种基于案例推理的高速列车故障诊断方法,通过建立包含车载设备、线路设施等故障案例的知识库,实现了对列车的供电、制动等系统的快速诊断,诊断准确率达到了95%以上。

基于模型的诊断是利用系统的物理模型、数学模型等,通过模型求解和参数估计,实现故障的定位和定量分析的方法[70]。Yan等[71]提出了一种基于bond graph模型的故障诊断方法,通过建立系统的能量传递和转换模型,通过参数估计实现了对系统的传感器、执行器等部件的故障定位和量化,诊断误差控制在5%以内。

尽管基于知识的故障诊断技术具有推理过程透明、诊断结果可解释等优点,但其知识获取和维护成本较高,且难以处理复杂、动态的故障情况[72]。此外,知识驱动的方法通常需要领域专家的参与,对专家的知识和经验依赖性较强[73]。因此,如何降低知识获取和维护成本、提高知识表示和推理的自动化程度,是基于知识的故障诊断技术面临的主要挑战。

(三)混合诊断技术

为了综合数据驱动和知识驱动方法的优势,克服单一方法的局限性,混合诊断技术受到了越来越多的关注[74]。混合诊断通过将机器学习、知识推理等技术相结合,实现故障诊断过程的自动化和智能化[75]。

一种典型的混合诊断方法是将机器学习与知识推理相结合,通过机器学习实现故障的初步诊断和分类,再利用知识推理实现故障原因的深入分析和定位[76]。Xu等[77]提出了一种基于神经网络和规则推理的混合故障诊断方法,首先通过神经网络对故障数据进行特征提取和分类,再利用规则知识库对故障类型进行细化诊断,实现了对化工过程的泵、阀等设备的精确诊断,诊断准确率达到了98%以上。

另一种混合诊断方法是将数据驱动与物理模型相结合,通过机器学习实现参数辨识和状态估计,再利用物理模型实现故障的定位和分析[78]。Wang等[79]提出了一种基于particle filter和模型的混合故障诊断方法,通过particle filter实现系统状态的在线估计,再利用物理模型实现故障参数的辨识和故障原因的分析,实现了对航空发动机的传感器、执行器等部件的实时诊断,诊断误差控制在2%以内。

混合诊断技术能够有效融合数据驱动和知识驱动的优势,实现故障诊断的自动化和智能化,但其实现难度和计算复杂度较高[80]。混合诊断需要解决不同技术之间的接口和融合问题,协调数据处理、知识推理、模型求解等不同任务,对诊断系统的设计和实现提出了更高的要求[81]。此外,混合诊断中不同技术的性能权衡和优化也是一个关键问题,需要根据具体应用场景和需求进行平衡和取舍[82]。

五、 自动化测试与质量控制系统框架

综合上述机器视觉检测、自动化测试平台、智能故障诊断等技术,本文提出了一种面向工业生产的自动化测试与质量控制系统框架,如图1所示。该框架以自动化测试平台为核心,集成机器视觉、虚拟仪器、测试自动化框架等技术,实现产品质量的在线检测和测试自动化;同时,引入智能故障诊断技术,实现设备和系统的健康监测和预测性维护,保障生产过程的稳定性和可靠性。

图1 自动化测试与质量控制系统框架

该框架主要包括以下几个模块:

(1)机器视觉检测模块:该模块采用基于深度学习的机器视觉算法,实现产品外观缺陷、尺寸偏差等质量问题的在线检测。通过工业相机采集产品图像,利用CNN等算法进行缺陷识别和分类,实现质量问题的自动筛选和报警。

(2)自动化测试平台:该模块以虚拟仪器为核心,集成各种测试仪器和控制设备,搭建通用的硬件测试环境。在软件层面,采用关键字驱动、数据驱动等测试自动化框架,实现测试用例的自动生成和执行。通过测试自动化,可以显著提高测试效率和覆盖率,降低人工成本和错误率。

(3)智能故障诊断模块:该模块采用机器学习、知识推理等技术,实现设备和系统的故障诊断和预测性维护。通过在线监测设备的工艺参数、振动信号等,利用SVM、CNN等算法进行故障模式识别和分类。同时,利用专家知识库和诊断推理引擎,实现故障原因的定位和分析。通过智能故障诊断,可以及早发现和预防潜在的设备故障,减少非计划停机时间,提高设备可靠性。

(4)质量数据分析模块:该模块汇聚机器视觉检测、自动化测试、故障诊断等环节的质量数据,采用大数据分析、机器学习等技术,挖掘质量问题的关联规律和影响因素。通过质量数据分析,可以实现质量缺陷的溯源和预防,指导工艺优化和产品改进,实现质量管理的闭环反馈。

(5)人机交互模块:该模块采用可视化、自然语言等技术,实现质量信息的直观呈现和人机交互。通过人性化的界面设计和交互方式,帮助质量管理人员快速了解质量状况,进行质量决策和优化。同时,还可以提供移动端、语音助手等多种交互方式,实现质量管理的智能化和便捷化。

上述框架集成了自动化测试与质量控制的各项关键技术,实现了从数据采集、质量检测、测试验证到诊断维护的全流程自动化和智能化,可以显著提高质量管理效率和水平。同时,该框架具有模块化、可扩展的特点,可以根据具体应用场景和需求,灵活选择和配置不同的技术模块,具有较强的适应性和灵活性。

 

本文综述了自动化测试与质量控制技术的研究现状,重点探讨了机器视觉检测、自动化测试平台、智能故障诊断等方面的最新进展和应用。在机器视觉检测方面,传统的基于阈值分割、边缘检测等方法存在泛化能力差、鲁棒性不足等问题,而基于深度学习的方法能够自动学习图像的高层语义特征,实现复杂缺陷的精确检测。在自动化测试平台方面,虚拟仪器、测试自动化框架等技术的发展,使得测试平台的灵活性、可扩展性不断提高,同时,智能化测试技术的引入,进一步提升了测试效率和测试质量。在智能故障诊断方面,机器学习、知识推理等技术的应用,实现了设备和系统故障的自动诊断和预测性维护,大大提高了诊断效率和准确性。

尽管自动化测试与质量控制技术取得了长足进步,但仍然存在一些亟待解决的问题和挑战。在机器视觉检测方面,如何解决工业场景下的数据标注不足、样本不均衡等问题,如何提高检测模型的鲁棒性和可解释性,是下一步研究的重点。在自动化测试平台方面,如何实现测试资源的灵活调度和优化配置,如何构建面向不同领域、不同对象的可复用测试资产库,是亟待解决的问题。在智能故障诊断方面,如何降低故障知识的获取和标注成本,如何提高诊断模型的泛化能力和适应性,是下一步研究的难点。

未来,自动化测试与质量控制技术将向着更加智能化、网联化、服务化的方向发展。人工智能、大数据、云计算、物联网等新兴技术将与自动化测试与质量控制深度融合,形成新的技术生态和应用模式。具体来说,未来的发展趋势主要包括以下几个方面:

(1)智能化:自动化测试与质量控制将进一步融合机器学习、知识工程、自然语言处理等人工智能技术,实现测试与诊断过程的自适应优化和自主决策。通过持续学习和优化,智能测试与诊断系统可以不断提高测试覆盖率、缩短测试周期、降低误报漏报率,实现测试与诊断的全流程自动化和智能化。

(2)网联化:自动化测试与质量控制将充分利用物联网、边缘计算等技术,实现分布式、网联化的测试与诊断。通过在产品、设备、生产线等各个环节部署传感器和数据采集单元,实时采集质量数据和状态信息,构建全生命周期、全价值链的质量追溯和预警体系。网联化的测试与诊断可以实现质量问题的快速发现和响应,提高质量管理的时效性和精准性。

(3)服务化:自动化测试与质量控制将从传统的功能导向转向服务导向,提供面向行业、面向场景的测试与诊断服务。通过构建测试与诊断服务平台,提供在线测试、远程诊断、预测性维护等服务,帮助用户快速实现测试自动化和质量提升。服务化的测试与诊断可以显著降低用户的使用门槛和维护成本,提高测试与诊断的经济性和可用性。

(4)标准化:自动化测试与质量控制将加快标准规范的制定和推广,促进行业内的技术融合和资源共享。通过制定测试接口、数据格式、诊断模型等标准规范,实现不同系统、不同平台之间的互联互通和协同工作。标准化的测试与诊断可以避免重复开发和资源浪费,提高行业整体的技术水平和创新效率。

总之,自动化测试与质量控制技术是保障工业产品质量、提升生产效率的关键支撑。随着人工智能、物联网等新兴技术的不断发展,自动化测试与质量控制必将迎来新的发展机遇和挑战。只有紧跟技术前沿,加强产学研用协同创新,突破关键核心技术,才能不断提升自动化测试与质量控制的智能化、网联化、服务化水平,为推动制造业高质量发展、建设制造强国提供有力支撑。

参考文献

[1] Rüßmann M, Lorenz M, Gerbert P, et al. Industry 4.0: The future of productivity and growth in manufacturing industries[J]. Boston Consulting Group, 2015, 9(1): 54-89.

[2] Colledani M, Tolio T, Fischer A, et al. Design and management of manufacturing systems for production quality[J]. CIRP Annals, 2014, 63(2): 773-796.

[3] 张军, 王飞, 顾新建. 自动化测试技术的研究现状及发展趋势[J]. 电子测量技术, 2018, 41(9): 1-7.

[4] Li J, Pu Y, Wang Z, et al. Machine vision intelligence for product defect inspection based on deep learning and Hough transform[J]. Journal of Manufacturing Systems, 2020, 57: 498-509.

[5] Jian S, Xu L, Shu F, et al. A comprehensive review of deep learning in machine vision[J]. Journal of Electronics and Information Technology, 2021, 43(1): 1-27.

[6] Sun Y, Bao J, Jiang G, et al. A machine vision inspection system for the surface defects of strongly reflected metal based on multi-class SVM[J]. Expert Systems with Applications, 2021, 164: 113924.

[7] Huang S H, Pan Y C. Automated visual inspection in the semiconductor industry: A survey[J]. Computers in industry, 2015, 66: 1-10.

[8] Patel D K, Meena S M, Srikant S S. Automated visual defect detection in PCB using deep learning[C]//2020 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA). IEEE, 2020: 1-6.

[9] Huang S, Mao C, Zhu Z, et al. A novel method for detecting glass bottle cracks based on machine vision[J]. Measurement, 2021, 168: 108363.

[10] Zhang J, Wang Y, Li Y, et al. Machine vision based electronic components defect detection using image segmentation and template matching[J]. Multimedia Tools and Applications, 2021, 80(5): 7427-7443.

[11] 张伟, 孙雅静, 刘强, 等. 复杂工业场景下机器视觉缺陷检测技术综述[J]. 计算机集成制造系统, 2020, 26(9): 2305-2320.

[12] Jian S, Xu L, Shu F, et al. A comprehensive review of deep learning in machine vision[J]. Journal of Electronics and Information Technology, 2021, 43(1): 1-27.

[13] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. nature, 2015, 521(7553): 436-444.

[14] Liu S, Huang D. Receptive field block net for accurate and fast object detection[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 385-400.

[15] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28: 91-99.

[16] Ren J, Yan K, Lu H, et al. A generic intelligent substation scene parsing framework based on deep learning[J]. International Journal of Electrical Power & Energy Systems, 2021, 125: 106454.

[17] Wang H, Hu R, Li P, et al. Automatic defect detection and classification in PCB based on faster R-CNN and data augmentation[J]. Journal of Physics: Conference Series. IOP Publishing, 2021, 1939(1): 012012.

[18] Liu Y, Bi Q, Shu F, et al. Fabric defect detection based on generative adversarial network[J]. IEEE Access, 2020, 8: 124684-124693.

[19] Tao X, Zhang D, Ma W, et al. Automatic metallic surface defect detection and recognition with convolutional neural networks[J]. Applied Sciences, 2018, 8(9): 1575.

[20] Yin S, Gao H, Ren J, et al. A novel convolutional neural network for industrial surface defect detection[J]. Sensors, 2021, 21(4): 1467.

[21] 杨洋, 张伟, 孙雅静, 等. 基于深度学习的工业缺陷检测方法综述[J]. 自动化学报, 2021, 47(8): 1543-1561.

[22] Dai X, Gao Z. From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2226-2238.

[23] 郑子彬. 虚拟仪器技术及其在自动化测试系统中的应用[J]. 电子测量与仪器学报, 2000, 14(4): 1-5.

[24] Tasner T, Lovrec D. Automated testing of hydraulic components and systems using LabVIEW[J]. Advances in Mechanical Engineering, 2019, 11(6): 1687814019854923.

[25] Liu X, Zhao Z, Zhu X, et al. A LabVIEW-based automatic test system for sieving chips[J]. Measurement, 2015, 66: 9-19.

[26] Kang J, Yang P, Wu Q, et al. An automatic test system for vehicle electronic control units based on CAN bus[J]. IEEE Access, 2020, 8: 1440-1450.

[27] Garousi V, Felderer M, Karapıçak Ç M, et al. Testing embedded software: A survey of the literature[J]. Information and Software Technology, 2018, 104: 14-45.

[28] Tao W, Shaopeng L, Gang Z. The research of test automation framework based on selenium[C]//2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). IEEE, 2019: 71-75.

[29] Leotta M, Clerissi D, Ricca F, et al. Capture-replay vs. programmable web testing: An empirical assessment during test case evolution[C]//2013 20th Working Conference on Reverse Engineering (WCRE). IEEE, 2013: 272-281.

[30] Bisht S. Robot framework test automation[M]. Packt Publishing Ltd, 2013.

[31] Luo Q, Moran K, Poshyvanyk D, et al. Improving GUI test coverage by exploiting common behavior among android apps[C]//2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 2018: 149-159.

[32] Beust C, Suleiman H. Next Generation Java Testing: TestNG and Advanced Concepts[M]. Pearson Education, 2007.

[33] Luo Q, Moran K, Poshyvanyk D, et al. Improving GUI test coverage by exploiting common behavior among android apps[C]//2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 2018: 149-159.

[34] Krebs R, Momm C, Kounev S. Architectural concerns in multi-tenant SaaS applications[C]//Closer. 2012: 426-431.

[35] Zhang Y, Wang Y, Tao L, et al. Test case generation for onboard system based on interface automata[J]. Tsinghua Science and Technology, 2019, 24(5): 539-547.

[36] Chen J, Hu K, Yu Y, et al. Adaptive integration testing based on test case classification[J]. International Journal of Software Engineering and Knowledge Engineering, 2019, 29(11n12): 1741-1760.

[37] Barr E T, Harman M, McMinn P, et al. The oracle problem in software testing: A survey[J]. IEEE transactions on software engineering, 2014, 41(5): 507-525.

[38] Harman M, Jia Y, Zhang Y. Achievements, open problems and challenges for search based software testing[C]//2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 2015: 1-12.

[39] Kochhar P S, Thung F, Nagappan N, et al. Understanding the test automation culture of app developers[C]//2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 2015: 1-10.

[40] Wang X, Sun J, Chen Z, et al. Towards optimal concolic testing[C]//Proceedings of the 40th International Conference on Software Engineering. 2018: 291-302.

[41] Zheng W, Wu X, Zhang X, et al. Deep learning-based vulnerability detection: A survey[J]. IEEE Access, 2020, 8: 181102-181126.

[42] Gao T, Liu Y, Cheng J, et al. FASTOD: A Fast Unsupervised Anomaly Detection Framework for Time Series Data[J]. IEEE Transactions on Knowledge and Data Engineering, 2021.

[43] Li Z, Ma X, Xu C, et al. Structural node embeddings on graphs[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2020, 14(4): 1-27.

[44] Gao X, Tan Y C, He J, et al. Omni-information-based fault detection for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2019, 67(3): 2482-2491.

[45] Gao X, Wen J, Zhang C. An improved random forest algorithm for predicting employee turnover[J]. Mathematical Problems in Engineering, 2019, 2019.

[46] Gao Y, Yang H, Zhang P, et al. A novel text

 

本文的完成离不开众多师友和同仁的悉心指导和大力支持,在此谨表衷心感谢。

首先,我要感谢我的导师XXX教授,他渊博的学识、严谨的治学态度和创新的科研思路,为我的研究工作提供了宝贵的指导和启发。导师不仅在学术上给予我悉心指点,在生活中也给予我无微不至的关怀,让我在科研道路上始终保持激情和动力。

其次,我要感谢课题组的各位老师和同学。与我一起攻克了许多技术难题。课题组的其他成员也给予了我诸多帮助和鼓励,在此一并表示感谢。

此外,我还要感谢学院和学校各部门的大力支持。学院为我的研究工作提供了优良的学术环境和充足的科研资源,学校的研究生教育中心、学术委员会等部门为我的学位论文工作提供了细致入微的指导和服务,在此表示由衷的谢意。

最后,我要感谢我的家人,是他们给予了我无尽的爱和支持,是他们的理解和鼓励让我能够全身心地投入到科研和学习中,是他们的付出和奉献成就了我今天的一切。谨以此文,献给所有关心、帮助和支持过我的师长、同仁、亲友,感谢你们!

再次向所有提供帮助和支持的单位及个人表示最诚挚的谢意!是你们的悉心指导和倾力相助,让我的研究工作得以顺利开展并取得阶段性成果。你们的支持和鼓励将是我继续前行的动力,我将在未来的工作中秉承初心、砥砺前行,争取为自动化测试与质量控制技术的发展贡献自己的绵薄之力!

  • 9
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值