
新型技术测试
文章平均质量分 78
人工智能系统测试
daopuyun
这个作者很懒,什么都没留下…
展开
-
人工智能产品与系统领域申请CNAS实验室政策解读
在设施和环境条件方面,对实验室整体的设施和环境条件的控制提出了要求,需要将设施和环境条件的要求形成文件,监测、控制和记录环境条件,并定期评审。在人员方面,主要包含人员能力要求的文件化、人员能力的确认、管理层职责和权限的传达、人员相关的管理程序和记录要求以及人员授权要求。第4条款通用要求,讲的是意识形态方面的要求,主要有两个组成部分,对公正性的要求以及对保密性的要求。最后对于检测结果的报告方面,规定了报告必须要包含的内容、出具结果的要求、简化方式的要求、报告符合性声明、报告意见和解释以及对于报告修改的要求。原创 2025-03-05 09:19:40 · 490 阅读 · 0 评论 -
大数据测试中,数据仓库表类型有哪些?
没有分区的表,数据全量更新或者增量合并,我们通常理解就是把这些数据放到了一个文件夹里面。这样会有什么好处呢?分区表的好处是可以查询到历史数据的状态以及变化过程,但是可以保存历史数据的状态,一般使用日期或者地区作为分区条件。是一种维护历史状态,以及最新状态数据的一种表,一般只会插入更新有状态变化的数据,保存数据的历史状态,不变更。删除外部表的时候,只会删除元数据,数据本身不删除,外部表可以自己指定路径,跨部门使用比较安全。放在tmp的表,这种表一般是测试或开发临时保存一些数据时用的,一般不需要我们去测试。原创 2025-03-03 10:35:27 · 276 阅读 · 0 评论 -
ISO/IEC 42001 人工智能管理标准解读
(1)确定组织在人工智能领域的角色定位在建立人工智能管理体系时,组织首先应就自身在人工智能系统领域的角色进行定位,建立和实施人工智能管理体系的内容。下图诠释了人工智能系统各相关方角色,供组织在确定自身角色定位时参考。(2)理解组织面临的内外部问题确定角色定位后,组织应进一步分析在人工智能管理领域所面临的内外部问题,从而为建立人工智能管理体系提供必要的输入。(3)理解组织利益相关方需求与期望组织应识别与人工智能管理的利益相关方,理解各相关方针对人工智能系统的管理需求与期望。原创 2025-02-27 13:30:00 · 792 阅读 · 0 评论 -
全面介绍人工智能产品与系统领域实验室CNAS资质申请
随着计算机硬件性能提升、大数据爆发增长以及机器学习尤其是深度学习技术突破,人工智能技术再次迎来复兴与繁荣。人工智能系统在医疗、交通、金融、教育、工业等领域的应用越来越广泛和深入。人工智能系统的普遍应用在业务创新、用户体验和效率提升方面取得了有目共睹的成果,与此同时也带来了许多潜在风险。原创 2025-02-26 09:59:26 · 582 阅读 · 0 评论 -
GB 44497-2024《智能网联汽车 自动驾驶数据记录系统》标准解读
GB 44497-2024《智能网联汽车 自动驾驶数据记录系统》针对智能网联汽车的自动驾驶数据记录系统进行了全面规范。标准要求我们记录车辆在自动驾驶模式下的所有关键操作数据,如:1. 车辆状态数据,如速度、加速度、转向角度、制动状态等;2. 环境感知数据,如周围物体的位置、速度、类型等;3. 驾驶决策数据,如路径规划、避障决策、紧急制动指令等;4. 系统状态数据,如软件版本、硬件状态、系统警告信息等。在数据存储方面,标准强调了数据的安全性和可靠性。原创 2025-02-25 09:12:38 · 1276 阅读 · 0 评论 -
GB 44495-2024《汽车整车信息安全技术要求》标准解读|内容架构、测试内容、应对措施
并对汽车信息安全管理体系的内容做了进一步明确:建立内部管理信息安全的流程,识别、评估、分类、处置车辆信息安全风险,建立车辆信息安全测试流程,监测、响应和上报告网络攻击,管理企业与供应商、服务提供商之间信息安全依赖关系,这与UNECE R155基本一致。在车辆外部连接安全要求、通信安全要求、软件升级安全要求和数据代码安全要求方面,UNECE R155中有列出70个威胁清单,GB 44495-2024《汽车整车信息安全技术要求》则是分别阐述了四大方面威胁的38项安全要求。原创 2025-02-24 16:00:00 · 1131 阅读 · 0 评论 -
GB 44496-2024《汽车软件升级通用技术要求》标准解读|标准结构、测试方法、测试内容
2024年08月23日,我国工业和信息化部发布了GB 44496-2024《汽车软件升级通用技术要求》,该标准将于2026年01月01日起实施。该标准是一项强制性国家标准,适用于M类、N类和O类汽车。自该项标准实施之日起,所有需要申请道路机动车辆产品准入的车企,必须满足该项标准要求。对于该公告实施之前的车辆,给予两年的缓冲整改期,以便车企对车辆进行升级改造,确保符合该项标准要求。自2028年01月01日起,所有在售车辆均需强制性符合该项标准要求。原创 2025-02-24 09:08:45 · 1433 阅读 · 0 评论 -
标准解读|汽车信息安全领域发布三项强制性国家标准,汽车测评领域新变革
为满足我国智能网联汽车行业管理需求、产业发展和技术进步需要,自2019年起我国陆续启动智能网联汽车领域相关强制性国家标准制定工作。8月23日,三项强制性国家标准以及一项推荐性国家标准正式出台。这几部标准从起草到意见征求阶段就备受关注,对整个智能网联汽车领域信息安全测评起着至关重要的作用。本文针对这四部标准的内容进行全面的介绍。原创 2025-02-21 16:00:00 · 1277 阅读 · 0 评论 -
NIST SP 800-193中固件安全测试指导意见
NIST SP 800-193是由美国国家标准技术研究所(NIST)发布的一份关于平台固件弹性的指南,这份指南针对平台固件和数据面对潜在破坏性攻击时的弹性提供了技术指导和建议,建议通过保护(Protection)、检测(Detection)和恢复(Recovery),以确保平台固件的完整性,从攻击中快速且安全地恢复。保护机制确保固件代码和关键数据保持完整,并受到未授权更改的保护;检测机制用于发现固件代码和关键数据何时被破坏;原创 2025-02-21 09:22:28 · 908 阅读 · 0 评论 -
固件测试技术系列|固件测试过程中常用工具有哪些?
它主要用于检测ELF(Executable and Linkable Format,可执行和可链接格式)二进制文件的安全特性,帮助开发者识别和确保他们的程序具备必要的安全防护措施,Checksec.sh是一个简单而强大的工具,适用于任何需要对二进制文件进行安全检查的情况,无论是在开发阶段还是在渗透测试中快速评估潜在的安全风险。Peda 是一个针对 GDB(GNU Debugger)的增强型插件,它提供了一套丰富的功能来辅助二进制分析和逆向工程,特别是在进行二进制漏洞挖掘和安全分析时。原创 2024-11-22 16:00:00 · 895 阅读 · 0 评论 -
物联网安全|固件安全测试中基于二进制的静态代码扫描工具介绍
为了确保固件安全,我们可以进行固件安全测试。在大多数的固件测试项目执行过程中,测试人员很难直接获取到固件的源代码,这就意味着测试人员无法直接阅读和理解程序的逻辑结构,这也增加了发现和修复问题的难度。固件测试比起通用类型的软件测试往往需要更高的跨学科需求,需要结合软件工程、硬件知识、网络安全、逆向工程等多领域的专业知识,对测试人员的综合素质要求较高,对新的测试团队来说,人员组建的难度很大。以上就是为您介绍的固件安全测试中的一些难点,以及固件安全测试基于二进制的静态代码扫描的必要性以及相关工具的原理介绍,原创 2024-11-22 09:08:01 · 1392 阅读 · 0 评论 -
AI测试的主要研究方向介绍
这个框架将支持对不同主题的基础测试数据集进行文本分词、图像标注、特征筛选等加工处理,为不同AI医疗产品提供定制化的测试数据,解决医学数据模块的通用性与特定测试数据集需求之间的冲突,确保测试数据集既具有足够的广泛性,覆盖多种医疗场景,又能满足特定AI医疗产品的测试需求,提高人工智能系统测试的针对性和可靠性。首先,基于模型的人工智能系统测试方法,通过构建可追踪、可测试的人工智能测试模型,将智能学习模型和数据模型融入其中,从而更好地评估训练数据和测试数据的质量。等需求,欢迎私信我,一起技术交流、探讨。原创 2024-11-15 16:00:00 · 1361 阅读 · 0 评论 -
万字长文讲透人工智能系统测试标准流程及测试方法大全
这个跟我们上面讲到的也是相关联的,比如说一个医疗诊断系统,允许的风险就必须要降到非常低,比如说系统的准确率必须要达到99%以上,即使有1%的差错,也有可能导致医疗事故。但是对于一个一般的人工智能系统,与生命没有什么关系的人工智能系统,比如说识别一个人的年龄、识别花花草草,这种应用即使出错危险也不会特别大。所以一定要根据具体的业务去分析人工智能测试可能带来的风险可能会有哪些,根据这个风险我们再去设计测试通过的准则有哪些。以上就是需求分析阶段所需要注意的问题,第二个阶段我们需要进行一个测试环境的准备。原创 2024-11-15 08:52:45 · 1407 阅读 · 0 评论 -
通过AI技术克服自动化测试难点(下)
同时另一方面,我们通过这种计算图处理的优化,去减少整个资源的消耗,像内存利用率的消耗等。同时它还提出从前端深度学习框架到裸机硬件的端到端编译管道,通过这样的技术能够帮助我们在基于AI的测试代码的生成效率提升及资源利用率的优化。有大量的数据集可以供我们机器学习的模型的训练,比如说像最有名的ImageNet,Google李飞飞教授团队研发的一个数据集,通过这种开放的数据集可以帮我们去更好地训练机器学习的模型。以上就是相关的AI技术跟测试的结合,下面的文章中我们将继续介绍怎样去设计AI自动化测试的技术架构。原创 2024-10-11 16:00:00 · 515 阅读 · 0 评论 -
通过AI技术克服自动化测试难点(中)
OCR的技术组成和计算机视觉的发展过程一样,它也属于图像处理的一个子分支,它的处理首先是由图像进行相应的处理,然后进行版面分析,版面分析之后,进行版面的字符的识别、字符的分割、语义的处理,然后进行版面的还原,然后进行格式化输出。通过字符分割的技术,我们可以识别出字的元素组成,可以通过行的分割、字的分割去识别哪些字和哪些字相互组合是有一定含义的。通过字符的识别我们去识别出字所代表的含义,英文的、中文的或者其他外文的都可以通过基本的字母表或字符表进行一个处理。神经网络是我们目前在AI领域用的最核心的方法。原创 2024-10-11 08:38:57 · 227 阅读 · 0 评论 -
通过AI技术克服自动化测试难点(上)
OpenCV是目前用到的最广泛的图像识别的框架,它的模块非常多,也非常复杂,它在ml模块里面,可以去集成各类机器学习的模块,主流的机器学习的算法模块都可以集成到OpenCV里面。首先我们一起看一下计算机视觉的发展历史,在上世纪70年代,处于技术萌芽期,由字符的识别技术慢慢进行演化,发展到现在,人脸识别技术已经是非常普遍的应用,图像识别技术在无人机、无人驾驶、电商等领域用得越来越多。文字识别技术,OCR技术已经有几十年的历史了,因为现在AI的出现,OCR技术与AI结合之后,可以使文字识别的精度更高。原创 2024-10-10 16:00:00 · 365 阅读 · 0 评论 -
大数据数据血缘是什么,跟数据质量有什么关系?
以一个数据加工的完整流程为例,每个数据加工的流程都通过一个唯一的标识进行标记,流程中的每一个环节都记录其前后依赖关系,程序将每一个环节的逻辑解析以后 根据依赖关系和流程便可以生成全流程的数据血缘。数据血缘的范围:数据血缘单纯的数据角度来看包含的维度有数据库、表、字段、系统、应用程序,即数据存储在什么数据库的什么表,对应的字段是什么以及字段的属性,数据所属的系统以及与数据有关的应用程序。第二个是反映了数据的变化过程。数据血缘:数据的来龙去脉,主要包含数据的来源、数据的加工方式、映射关系以及数据出口。原创 2024-09-03 16:00:00 · 548 阅读 · 0 评论 -
大数据测试知识架构与技术框架分享|大数据测试工程师学习方向
我们整个大数据的技术体系、技术栈是非常复杂的,它分了很多层次,在不同的层次都要处理不同的问题。数据存储层,有非常多的NoSQL的数据库,像HBase、MongoDb、Redis等等各类型的、处理不同类型数据存储的数据库的技术,还有像HDFS这种典型的。大数据基本的思想、它的整体框架,与以往的数据相关体系实际上是相类似的。在计算引擎层,有批处理的、有流式的,不同的技术它们用的框架也不同。、OLEP、商务智能这些传统的数据分析的技术之外,现在有很多流式的、实时的数据处理、数据分析相关的框架技术。原创 2024-09-02 16:00:00 · 713 阅读 · 0 评论 -
大数据及人工智能产品应该如何测试?
还有,近期人工智能系统大家都研究地比较热门的一个技术叫做对抗样本技术(后面我们也会提到)也会对人工智能造成一个非常严重的干扰,特别是对于这种关乎性命攸关的系统,比如自动加视系统、医疗辅助诊断系统。由于人工智能往往存在一些训练过程中的过拟合、欠拟合等等的一些原因,或者遇到了环境中的一些样本的偏差,使得它可能在一些情况下对输入的判断有一些偏差。当今社会,人工智能的发展非常快,自从2016年AlphaGo战胜了世界围棋冠军李世石之后,人工智能的发展,特别是以深度学习为代表的人工智能的发展到了一个高速发展的阶段。原创 2024-08-29 16:00:00 · 446 阅读 · 0 评论 -
大数据测试怎么做,数据应用测试、数据平台测试、数据仓库测试
大数据,是指一个公司创造或收集的“结构化”、“半结构化”或者“非结构化”的海量数据集合。它的意义不在于掌握的数据量是最大的,而在于能否有效、专业的对这些数据进行加工处理,并让这些海量的、多样化的数据产生最大的价值。原创 2024-08-28 16:00:00 · 3917 阅读 · 0 评论 -
大数据系统测试——大数据系统解析(下)
不同的用户对数据可视化的需求是不同的,不同的用户关注的点是不一样的。即便是在同一个单位,在不同的部门、不同的岗位、不同的级别,他所要求的数据展现也是不同的。就是数据处理过程中可能需要与用户进行很多交互,在交互中用户输入一些内容,大数据后台进行一些处理,相互之间是有不断的交互的,随时根据交互的内容进行数据的应的处理。,每一个部门在每一个业务上都会有一个专门的数据分析的模型,这种数据分析模型的专业化程度越来越高,与个性化的需求的结合程度也越来越高。实时处理的,这对性能的要求是比较高的。原创 2024-08-27 16:00:00 · 450 阅读 · 0 评论 -
大数据系统测试——大数据系统解析(上)
在资源管理与服务协调层需要保证的主要有两点,首先是资源共享化,因为大数据系统所处理的数据量级是非常大的,所需要的资源也是非常大,那么这就要求资源必须保证共享化,是放在一个整体的资源池,像我们现在用到的云计算的技术,它需要保证无论是存储资源还是计算资源还是网络资源,都需要是共享化。需要保证数据能够根据相应的传感器或数据来源的增加进行相应的扩展,保证整个数据收集过程的安全可靠,同时不能有太高的延迟,数据收集是整个大数据体系最基础的一个源头,如果这个层级不解决好,就会暴露出很多数据问题。希望这篇文章对想提高。原创 2024-08-26 16:00:00 · 515 阅读 · 0 评论 -
人工智能系统测试生命周期详解之测试分析
前面的文章里我们已经整体介绍过了人工智能测试的生命周期,它需要经历测试需求的分析、测试环境的准备、数据的准备与验证、测试的执行预分析以及上线后的监控这样一个过程。这样就导致有的人输入一些脏话、或者反动的一些话语,对这个机器人进行不断的调教之后,就导致了这个聊天机器人会表达一些法西斯的思想或者脏话连篇的现象,最后不得不宣布让这个聊天机器人的模型重置。所以说对这类系统来说,我们也要不断地去监控模型的一些实时的表现,以及用户输入数据的一些实时的表现,防止人们把模型“教坏”的情况。原创 2024-08-15 16:00:00 · 489 阅读 · 0 评论 -
人工智能系统测试生命周期详解之测试执行
前面的文章里我们已经整体介绍过了人工智能测试的生命周期,它需要经历测试需求的分析、测试环境的准备、数据的准备与验证、测试的执行预分析以及上线后的监控这样一个过程。这里面又可以分为很多种测试的流程,比如说刚才说到的有模型离线的评估、系统的测试、性能的测试、可靠性的测试、A/B测试,最后我们还要针对我们的测试结果进行一定的分析。模型的离线评估之后,我们也可以进行一个系统的测试,这个时候跟传统的软件测试是有一定的重合的,比如说我们会测试系统整体的业务流程,测试模块之间 数据流动以及测试一些真实用户的使用场景。原创 2024-08-14 16:00:00 · 420 阅读 · 0 评论 -
人工智能系统测试生命周期详解之测试数据准备
前面的文章里我们已经整体介绍过了人工智能测试的生命周期,它需要经历测试需求的分析、测试环境的准备、数据的准备与验证、测试的执行预分析以及上线后的监控这样一个过程。最后是对于监督的模型,所谓监督的模型就是说我训练的时候,我训练的数据是经过人为的标注的,就叫做可监督的学习,对于这种学习出来的模型,我们测试数据的标签也要尽量保证它的正确性。这个往往发生在离线测试的情况,比如说我们训练好了一个人工智能模型之后,我们需要进行离线测试的时候,我们这个时候的测试数据可以和原来的训练数据成一定的比例关系。原创 2024-08-13 16:00:00 · 249 阅读 · 0 评论 -
人工智能系统测试生命周期详解之测试环境准备
由此,我们结合以前研究的一些经验,我们发觉DevOps的一些相关技术,尤其是容器技术(Docker+Kubernetes)越来越多地应用于人工智能公司当中,被用于人工智能系统测试的快速测试与部署。前面的文章里我们已经整体介绍过了人工智能测试的生命周期,它需要经历测试需求的分析、测试环境的准备、数据的准备与验证、测试的执行预分析以及上线后的监控这样一个过程。以上的内容就是在测试环境准备环节我们需要了解的一些方面,接下来的文章我们将针对人工智能系统测试生命周期的第三个阶段“数据准备阶段”进行介绍。原创 2024-08-12 16:00:00 · 424 阅读 · 0 评论 -
人工智能系统测试生命周期详解之需求分析
我们如何确定测试通过的准则,需要我们的测试团队结合人工智能系统的一些应用场景,进行一些共同参与、讨论,不同的应用场景,测试通过的准则是不一样的。前面的文章里我们已经整体介绍过了人工智能测试的生命周期,它需要经历测试需求的分析、测试环境的准备、数据的准备与验证、测试的执行预分析以及上线后的监控这样一个过程。这个跟我们上面讲到的也是相关联的,比如说一个医疗诊断系统,允许的风险就必须要降到非常低,比如说系统的准确率必须要达到99%以上,即使有1%的差错,也有可能导致医疗事故。下面的文章将继续为大家介绍。原创 2024-08-09 18:00:00 · 623 阅读 · 0 评论 -
人工智能系统测试的流程与生命周期
也就是说,不断的用这个数据库去训练这个模型,再从新的数据中去更新这个模型,去不断地进行线下和线上的测试这样一个过程。第一个是线上测试会接触到更多的新的一些数据,有些数据可能是一些非法的,有的可能是造成一定影响的,都是有可能发生的,这个对于线下的测试来说一般是很难做到的。首先我们一起来看一下,一个企业的人工智能产品部署和发布的一个流程,首先企业会从历史数据库中,利用数据去训练出一个初始的模型,这个。第二点,线上的测试除了线下测试需要考虑的模型的一些参数之外,还可能会考虑到一些性能方面的问题。原创 2024-08-08 16:00:00 · 340 阅读 · 0 评论 -
人工智能系统测试中,A/B测试的流程、技术方法与策略
双盲测试通过将病人随机分成两组,在病人不知情的情况下分别给予测试药物和安慰剂,经过一段时间的实验后,比较这两组病人的表现是否具有统计学上的显著差异,从而判断测试用药是否有效。在软件测试领域,A/B测试是一种通过对比两个或多个网页或系统的不同版本来优化产品性能和用户体验的常用手段,其底层逻辑融合了统计学中的假设检验原理,并结合了实际的业务价值。了解了人工智能A/B测试的发展及其重要作用后,我们转向本文的核心内容——剖析A/B测试在人工智能测试实践的一般流程,探讨如何设计和执行一个成功的A/B测试。原创 2024-08-06 16:00:00 · 1324 阅读 · 0 评论 -
如何对人工智能系统进行测试|要点,方法及流程
下面这两幅图是医学辅助诊断领域的样例图,是皮肤上的疤痕的拍片的一个图,其中一张是真实的医院拍摄的图像,另一张是模仿医学图像去自动生成的一张新的图像,比如说我们现在要测试这样一个功能,测试我们的计算机生成的图片到底好不好,我们怎么来确定呢?最后是对于监督的模型,所谓监督的模型就是说我训练的时候,我训练的数据是经过人为的标注的,就叫做可监督的学习,对于这种学习出来的模型,我们测试数据的标签也要尽量保证它的正确性。总结来说,由于编程模式的改变,使得人工智能的程序会有很多的特性,导致其无法用传统的方法去进行测试。原创 2024-08-05 16:00:00 · 2273 阅读 · 0 评论 -
人工智能测试数据集构建指南丨如何构建高质量的AI测试数据集?
在探讨人工智能测试数据集的构建流程之前,我们首先需要明确人工智能测试数据集的概念。在开发和训练人工智能系统的过程中,数据集被划分成了不同的部分,测试集就是其中之一。在人工智能测试过程中,测试数据集是用于评估和验证人工智能系统性能的一组数据样本集合,通常包含了各种类型的输入数据,以及与之对应的正确输出或标签。原创 2024-08-02 18:00:00 · 2561 阅读 · 0 评论 -
AI模型离线测试指南:测试方法、评估指标与提升技巧
方法介绍:一种基于随机抽样的模型性能评估方法,其核心思想是通过多次随机抽样来模拟不同的数据分布和模型训练过程,从而全面评估模型的性能。本文我们将从人工智能模型离线测试的概念入手,逐一解析离线评估的方法、评估指标与提升方法,旨在提供一套全面、实用的人工智能模型的离线测试指南。模型的离线评估指的是在AI模型部署到实际环境之前,使用测试数据集评估模型性能的过程。人工智能模型的评价指标涵盖了分类、回归和时间效率等多个方面,通过综合应用这些指标,我们可以全面评估模型的性能,为模型优化和选择提供有力支持。原创 2024-08-01 19:00:00 · 2091 阅读 · 0 评论 -
AI系统测试方法|变异测试的流程及优化技术
在变异测试中,在原程序中注入人为设计的语法错误的过程称为变异,被测试的程序基于一定的代码转换规则即变异算子,对源程序中的特定代码元素进行变异形成源程序的衍生程序即变异体。如果一个测试用例能够检测到一个简单变异体(即小的、单一的代码变更)的缺陷,那么这个测试用例很可能检测到更为复杂的变异体(即多个小的代码变更综合起来的结果)的缺陷。在变异测试中,变异体的生成技术即变异技术是核心。本文将重点探讨变异测试在AI系统测试中的执行流程,呈现一个完整的测试框架,以及优化变异测试的流程、提高测试效率的方法。原创 2024-07-31 17:00:09 · 981 阅读 · 0 评论 -
AI测试:人工智能模型的核心测试指标,分类判别、目标检测、图像分割、定量计算分别有哪些指标?
对于AI医学影像系统的图片分割任务,除了上述的准确度、完整性、召回率、特异性等指标,还有以下关键的评价指标可以反映出人工智能系统在图像分割场景中的性能。对于乳腺癌钼靶影像,人工智能模型可以计算出乳腺肿块的边缘特征(肿块边缘的光滑程度、是否存在毛刺征象等)、肿块的密度、肿块的体积、肿块内的微钙化灶数量等,在这些指标的帮助下,我们能够对乳腺肿块的性质进行更为精确的判断,辅助医生进行诊断和治疗。衡量的是模型识别出真实负类(健康)样本的能力,即在所有实际健康的患者中,模型能够正确识别出的比例。原创 2024-07-30 21:00:00 · 1488 阅读 · 0 评论 -
五大AI测试开源框架及使用方法介绍
它提供了丰富的基准任务和数据集,涵盖了自然语言处理(NLP)、计算机视觉(CV)等多个领域,有助于评估模型在真实场景中的能力,而非仅仅依赖于单一的指标或特定的训练集。由Facebook的AI研究团队开发的开源深度学习框架,PyTorch不仅提供了构建和训练深度学习模型的工具,还包含了用于模型测试和评估的功能。接下来的内容,我们将介绍几个知名的AI测试开源框架,探讨每个开源框架的优势及使用场景,了解如何使用它们进行有效的AI测试。在测试函数内部,定义模型的预期属性或不变量,并使用模型处理生成的数据。原创 2024-07-29 19:00:00 · 3721 阅读 · 0 评论 -
AI软件测试|人工智能测试中对抗样本生成攻略
对抗扰动与原始图像共同构成了对抗样本。这一阶段需要攻击者使用训练数据和对抗样本生成技术生成干扰样本。随着生成对抗样本的迭代算法涌现,对抗样本的生成方法日益丰富,大致包含基于梯度的生成方式如 FGSM、基于优化的生成方式如JSMA、基于GAN的生成方式三类。总体来说,对抗样本的生成与检测包含了以下几个基本步骤:1)原创 2024-07-26 19:00:00 · 1179 阅读 · 0 评论