Math Reference Notes: 函数平移中的“左加右减”现象

在研究函数图像的平移时,有一个常见规律叫做“左加右减”,这个现象涉及的是函数的横向平移,即函数图像在 x 轴方向上的移动。理解“左加右减”的核心在于如何修改自变量 x x x,并对图像位置产生相应的影响。


1. 函数的平移

函数的平移是指将整个函数的图像沿某个方向平移,而不改变图像的形状。平移通常分为两种类型:

  • 横向平移:沿 x 轴方向平移。
  • 纵向平移:沿 y 轴方向平移。

其中,“左加右减”现象是针对横向平移而言的。

1.1 基本函数形式

考虑一个函数 f ( x ) f(x) f(x),如果我们希望将它的图像向左或向右平移,可以通过改变函数的自变量来实现。

2. “左加右减”的解释

“左加右减”是指:当在函数的自变量 x x x 中添加一个正数时,函数的图像会向左平移;当自变量中减去一个正数时,函数的图像会向右平移。

  • 向右平移:如果函数图像向右平移 h h h 个单位,我们将自变量 x x x 替换为 x − h x - h xh,即函数变为 f ( x − h ) f(x - h) f(xh)
  • 向左平移:如果函数图像向左平移 h h h 个单位,我们将自变量 x x x 替换为 x + h x + h x+h,即函数变为 f ( x + h ) f(x + h) f(x+h)

2.1 向右平移的数学描述

给定一个函数 f ( x ) f(x) f(x),如果我们希望它的图像向右平移 h h h 个单位,新的函数表达式为:
y = f ( x − h ) y = f(x - h) y=f(xh)
为什么是向右平移?

  • x = h x = h x=h 时,新的函数值 f ( x − h ) = f ( 0 ) f(x - h) = f(0) f(xh)=f(0) 对应了原函数的值 f ( 0 ) f(0) f(0),也就是说,原来函数在 x = 0 x = 0 x=0 处的值,现在出现在 x = h x = h x=h 处。因此,整个图像向右移动了 h h h 个单位。

2.2 向左平移的数学描述

同样地,给定函数 f ( x ) f(x) f(x),如果我们希望它的图像向左平移 h h h 个单位,新的函数表达式为:
y = f ( x + h ) y = f(x + h) y=f(x+h)
为什么是向左平移?

  • x = − h x = -h x=h 时,新的函数值 f ( x + h ) = f ( 0 ) f(x + h) = f(0) f(x+h)=f(0) 对应原函数的值 f ( 0 ) f(0) f(0),意味着原来函数在 x = 0 x = 0 x=0 处的值,现在出现在 x = − h x = -h x=h 处。因此,图像向左移动了 h h h 个单位。

3. 实例解析

3.1 向右平移

假设函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2,如果我们将该函数向右平移 2 个单位,则新的函数形式为:
y = f ( x − 2 ) = ( x − 2 ) 2 y = f(x - 2) = (x - 2)^2 y=f(x2)=(x2)2
原函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 的顶点在 ( 0 , 0 ) (0, 0) (0,0),而新函数 f ( x − 2 ) f(x - 2) f(x2) 的顶点在 ( 2 , 0 ) (2, 0) (2,0),所以图像向右平移了 2 个单位。

3.2 向左平移

同样的函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2,如果将它向左平移 3 个单位,新的函数形式为:
y = f ( x + 3 ) = ( x + 3 ) 2 y = f(x + 3) = (x + 3)^2 y=f(x+3)=(x+3)2
原函数的顶点在 ( 0 , 0 ) (0, 0) (0,0),而新函数 f ( x + 3 ) f(x + 3) f(x+3) 的顶点在 ( − 3 , 0 ) (-3, 0) (3,0),所以图像向左平移了 3 个单位。

4. 为什么是“左加右减”?

这个现象可以通过代数和几何的角度来理解。

4.1 从代数的角度理解

考虑函数 f ( x ) f(x) f(x) 的自变量 x x x 被替换为 x − h x - h xh

  • 当我们代入 x = h x = h x=h 时,新的表达式变为 f ( h − h ) = f ( 0 ) f(h - h) = f(0) f(hh)=f(0),即函数的值与原函数在 x = 0 x = 0 x=0 处的值相同。因此,图像被向右移动了 h h h 个单位。

同理,若将自变量替换为 x + h x + h x+h,那么代入 x = − h x = -h x=h 时,新的表达式变为 f ( − h + h ) = f ( 0 ) f(-h + h) = f(0) f(h+h)=f(0),表明图像向左移动了 h h h 个单位。

4.2 从几何的角度理解

函数的平移是通过改变 x 轴上的坐标来实现的。如果在自变量中加入一个正数 h h h,那么图像中的所有点的 x 坐标都会减少 h h h(即向左移动);相反,如果减去一个正数 h h h,图像中的所有点的 x 坐标都会增加 h h h(即向右移动)。

5. 纵向平移:上下移动

除了“左加右减”的横向平移外,函数图像还可以进行纵向平移,即沿 y 轴方向的移动。这种平移不涉及改变自变量,而是直接改变函数值:

  • 向上平移 k k k 个单位:函数变为 f ( x ) + k f(x) + k f(x)+k
  • 向下平移 k k k 个单位:函数变为 f ( x ) − k f(x) - k f(x)k

5.1 纵向平移的例子

考虑函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2,如果将其图像向上平移 3 个单位,则新的函数为:
y = f ( x ) + 3 = x 2 + 3 y = f(x) + 3 = x^2 + 3 y=f(x)+3=x2+3
图像整体向上移动了 3 个单位,原顶点 ( 0 , 0 ) (0, 0) (0,0) 现在变为 ( 0 , 3 ) (0, 3) (0,3)

同理,若向下平移 4 个单位,则函数变为:
y = f ( x ) − 4 = x 2 − 4 y = f(x) - 4 = x^2 - 4 y=f(x)4=x24
图像整体向下移动了 4 个单位,顶点变为 ( 0 , − 4 ) (0, -4) (0,4)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值