在研究函数图像的平移时,有一个常见规律叫做“左加右减”,这个现象涉及的是函数的横向平移,即函数图像在 x 轴方向上的移动。理解“左加右减”的核心在于如何修改自变量 x x x,并对图像位置产生相应的影响。
1. 函数的平移
函数的平移是指将整个函数的图像沿某个方向平移,而不改变图像的形状。平移通常分为两种类型:
- 横向平移:沿 x 轴方向平移。
- 纵向平移:沿 y 轴方向平移。
其中,“左加右减”现象是针对横向平移而言的。
1.1 基本函数形式
考虑一个函数 f ( x ) f(x) f(x),如果我们希望将它的图像向左或向右平移,可以通过改变函数的自变量来实现。
2. “左加右减”的解释
“左加右减”是指:当在函数的自变量 x x x 中添加一个正数时,函数的图像会向左平移;当自变量中减去一个正数时,函数的图像会向右平移。
- 向右平移:如果函数图像向右平移 h h h 个单位,我们将自变量 x x x 替换为 x − h x - h x−h,即函数变为 f ( x − h ) f(x - h) f(x−h)。
- 向左平移:如果函数图像向左平移 h h h 个单位,我们将自变量 x x x 替换为 x + h x + h x+h,即函数变为 f ( x + h ) f(x + h) f(x+h)。
2.1 向右平移的数学描述
给定一个函数
f
(
x
)
f(x)
f(x),如果我们希望它的图像向右平移
h
h
h 个单位,新的函数表达式为:
y
=
f
(
x
−
h
)
y = f(x - h)
y=f(x−h)
为什么是向右平移?
- 当 x = h x = h x=h 时,新的函数值 f ( x − h ) = f ( 0 ) f(x - h) = f(0) f(x−h)=f(0) 对应了原函数的值 f ( 0 ) f(0) f(0),也就是说,原来函数在 x = 0 x = 0 x=0 处的值,现在出现在 x = h x = h x=h 处。因此,整个图像向右移动了 h h h 个单位。
2.2 向左平移的数学描述
同样地,给定函数
f
(
x
)
f(x)
f(x),如果我们希望它的图像向左平移
h
h
h 个单位,新的函数表达式为:
y
=
f
(
x
+
h
)
y = f(x + h)
y=f(x+h)
为什么是向左平移?
- 当 x = − h x = -h x=−h 时,新的函数值 f ( x + h ) = f ( 0 ) f(x + h) = f(0) f(x+h)=f(0) 对应原函数的值 f ( 0 ) f(0) f(0),意味着原来函数在 x = 0 x = 0 x=0 处的值,现在出现在 x = − h x = -h x=−h 处。因此,图像向左移动了 h h h 个单位。
3. 实例解析
3.1 向右平移
假设函数
f
(
x
)
=
x
2
f(x) = x^2
f(x)=x2,如果我们将该函数向右平移 2 个单位,则新的函数形式为:
y
=
f
(
x
−
2
)
=
(
x
−
2
)
2
y = f(x - 2) = (x - 2)^2
y=f(x−2)=(x−2)2
原函数
f
(
x
)
=
x
2
f(x) = x^2
f(x)=x2 的顶点在
(
0
,
0
)
(0, 0)
(0,0),而新函数
f
(
x
−
2
)
f(x - 2)
f(x−2) 的顶点在
(
2
,
0
)
(2, 0)
(2,0),所以图像向右平移了 2 个单位。
3.2 向左平移
同样的函数
f
(
x
)
=
x
2
f(x) = x^2
f(x)=x2,如果将它向左平移 3 个单位,新的函数形式为:
y
=
f
(
x
+
3
)
=
(
x
+
3
)
2
y = f(x + 3) = (x + 3)^2
y=f(x+3)=(x+3)2
原函数的顶点在
(
0
,
0
)
(0, 0)
(0,0),而新函数
f
(
x
+
3
)
f(x + 3)
f(x+3) 的顶点在
(
−
3
,
0
)
(-3, 0)
(−3,0),所以图像向左平移了 3 个单位。
4. 为什么是“左加右减”?
这个现象可以通过代数和几何的角度来理解。
4.1 从代数的角度理解
考虑函数 f ( x ) f(x) f(x) 的自变量 x x x 被替换为 x − h x - h x−h:
- 当我们代入 x = h x = h x=h 时,新的表达式变为 f ( h − h ) = f ( 0 ) f(h - h) = f(0) f(h−h)=f(0),即函数的值与原函数在 x = 0 x = 0 x=0 处的值相同。因此,图像被向右移动了 h h h 个单位。
同理,若将自变量替换为 x + h x + h x+h,那么代入 x = − h x = -h x=−h 时,新的表达式变为 f ( − h + h ) = f ( 0 ) f(-h + h) = f(0) f(−h+h)=f(0),表明图像向左移动了 h h h 个单位。
4.2 从几何的角度理解
函数的平移是通过改变 x 轴上的坐标来实现的。如果在自变量中加入一个正数 h h h,那么图像中的所有点的 x 坐标都会减少 h h h(即向左移动);相反,如果减去一个正数 h h h,图像中的所有点的 x 坐标都会增加 h h h(即向右移动)。
5. 纵向平移:上下移动
除了“左加右减”的横向平移外,函数图像还可以进行纵向平移,即沿 y 轴方向的移动。这种平移不涉及改变自变量,而是直接改变函数值:
- 向上平移 k k k 个单位:函数变为 f ( x ) + k f(x) + k f(x)+k。
- 向下平移 k k k 个单位:函数变为 f ( x ) − k f(x) - k f(x)−k。
5.1 纵向平移的例子
考虑函数
f
(
x
)
=
x
2
f(x) = x^2
f(x)=x2,如果将其图像向上平移 3 个单位,则新的函数为:
y
=
f
(
x
)
+
3
=
x
2
+
3
y = f(x) + 3 = x^2 + 3
y=f(x)+3=x2+3
图像整体向上移动了 3 个单位,原顶点
(
0
,
0
)
(0, 0)
(0,0) 现在变为
(
0
,
3
)
(0, 3)
(0,3)。
同理,若向下平移 4 个单位,则函数变为:
y
=
f
(
x
)
−
4
=
x
2
−
4
y = f(x) - 4 = x^2 - 4
y=f(x)−4=x2−4
图像整体向下移动了 4 个单位,顶点变为
(
0
,
−
4
)
(0, -4)
(0,−4)。