数据驱动的算法工程落地!

本文探讨了数据驱动算法在企业中的落地过程,包括数据驱动算法的进展、算法部门的分工与招聘挑战以及企业在数据管理上的痛点。算法专家指出,设备安装和数据标注在工程落地中占据重要地位,而数据管理人员、研究人员和工程人员需具备不同技能。此外,数据格式统一、数据存储管理和数据安全也是企业面临的重要问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

↑↑↑关注后"星标"Datawhale

每日干货 & 每月组队学习,不错过

 Datawhale干货 

开源数据平台 格物钛 X Datawhale

导读:随着科技浪潮的演进,数据已然成为第五大生产要素,越来越多的企业开启数字化转型,然而目前企业的现状却是数据人才的储备远远不足,学生却求职内卷,所学与企业具体生产环境匹配极低。

本文邀请了雪湖科技算法专家张益兴、格物钛首席产品官王广宇带来分享:企业面临的数据问题是什么,以及企业实际工程落地的经验。分为三部分,第一部分是会先讲数据驱动算法目前的进展,第二部分是算法部门分工与招人痛点,第三部分聊聊数据管理的痛点问题。

01 张益新:数据驱动算法的进展

人工智能在国内2017年后才开始火热,资本市场也竞相追逐,但其实在 1950 年左右就出来了人工智能概念。但当时没得到很好的发展,出现了所谓第一次危机的,到了 60- 70 年代,又出现了第二次危机,明斯基等人工智能大拿论断说人工智能是无法实现的。直到布尔兹曼基的算法出现打破了这一论断,80 年代的时候,现在我们大家所熟知的图灵奖深度学习三巨头出现,终于在 2008 年开始有一些转机。吴恩达用 GPU 解决了数据集训练问题,才把我们目前使用的这种基于数据的方法训练这条路走通了。

a7ec5d739e20e22f45e7cd86db16fbd5.png

我们现在还是处于弱人工智能时代,是有多少数据,就有多少智能,有多少人工就有多少智能。目前的人工智能分为机器感知、学习、语言、记忆、决策几个方向。现在我们能落地的大部分都属于感知层级。语音和自然语言处理等处理的数据类型不一样,但也属于基于数据驱动的类型。

f47090ec9bd3029ae6abddd62312432f.png

在目前的弱人工智能阶段,是一个趋于数据驱动的过程。工程落地的大致流程步骤,其实就是我们基于深度学习的框架tensorflow等所架构的一套叫做生产环境部署的流程。从最初的提取和验证数据,到训练分析模型,最后部署到生产环境中,这是一套环环相扣的标准流程。只要把每一步操作都链接起来,有机会形成一个快速落地的工程,这是在算法落地中非常看重的一环。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值