持续学习——《Selfless Sequential Learning》——ICLR2019

本文探讨了在固定模型容量下进行连续学习的挑战,借鉴哺乳动物大脑的学习机制,介绍了稀疏编码通过局部神经抑制和折扣(SLNID)实现的方法。旨在创建高效且互不干扰的表示,减少过拟合,避免灾难性遗忘。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

sequential learning=lifelong learning=incremental learning = continual learning, look at the scenario with fixed model capacity, the learning process should account for future tasks to be added and thus leave enough capacity for them. (not selfish)

Introduction

the challenge situation of learning a sequence of tasks, without access to any previous or future task data and restricted to a fixed model capacity. 哺乳动物mammalian brain的大脑学习任务。用神经科学的内容来解释motivation.首先,较少数量的神经元被激活用于表征信息,然后被激活的神经元会减少该神经元周围的神经元的活动(lateral inhibition)。This creates a powerful decorrelated and compact representation with minimum interference between different input patterns in the brain (Yu et al., 2014)
《Reducing overfitting in deep networks by decorrelating representations arxiv2015》 show that when the amount of overfitting in a neural network is reduced, the representation correlation is also reduced
Parameter sparsity or representation sparsity.
要理清几个概念,disentangled representation.解耦的表达更不容易遭遇灾难性遗忘
Sparse and decorrelated representation。Decorrelated representation=disentangled representation
EWC, MAS
后面讲sparsity,the main idea of our regularizer is to penalize neurons that are active at the same time.

Method

Sparse coding through Local Neural Inhibition and Discounting (SLNID). 介绍了一种新的regularizer, which encourages sparsity in the activations for each layer.

Conclusion

sparsity should be imposed at the level of representation rather than at the level of the network parameters.
提出方法的motivation来自于lateral inhibition in the mammalian brain. 具体地,a new regularizer that decorrelates nearby active neurons.
Leaning a new task selflessly by leaving capacity for future tasks, avoid forgetting previous tasks通过考虑神经元的重要性neuron importance(之前的工作相似的insight,parameter importance)

Key points: 这篇文章motivation很好;包装方法的解释(神经科学)可以多学习

### 多模态学习中的正交顺序融合 在多模态学习领域,不同类型的输入数据(如图像、音频和文本)被组合起来用于提高模型性能。正交顺序融合是一种特定的方法论,在该框架下,来自多个模式的数据按照一定次序处理并最终集成。 #### 正交顺序融合概念 正交顺序融合指的是当两个或更多特征向量之间相互独立或者几乎不相关时所采用的一种融合策略。在这种情况下,各模态的信息可以视为彼此补充而非冗余。通过这种方式,可以从不同的角度捕捉目标对象的本质属性[^1]。 #### 方法和技术 为了实现有效的正交顺序融合,通常会经历以下几个方面: - **预处理阶段**:对于每种模态单独执行标准化操作,确保它们具有相似尺度; - **提取表示层**:利用神经网络或其他机器学习算法分别从各个单模态中抽取高层次抽象特性; - **构建联合空间**:设计一种机制来映射这些高维表达到一个新的共同子空间里,在这里可以直接比较异构源之间的关系; - **优化损失函数**:引入额外项以鼓励生成的嵌入尽可能保持原始样本间的相对位置不变的同时最大化跨视图差异性。 ```python import torch.nn as nn class OrthogonalSequentialFusion(nn.Module): def __init__(self, input_dims, hidden_dim): super(OrthogonalSequentialFusion, self).__init__() # Define separate layers for each modality self.modality_layers = nn.ModuleList([nn.Linear(in_dim, hidden_dim) for in_dim in input_dims]) def forward(self, *modality_inputs): transformed_features = [] for layer, data in zip(self.modality_layers, modality_inputs): out = layer(data) transformed_features.append(out) fused_representation = sum(transformed_features) / len(modality_inputs) return fused_representation ``` #### 应用场景 这种方法广泛应用于各种实际问题解决当中,特别是在那些涉及复杂感知任务的地方,比如自动驾驶汽车环境理解、医疗影像分析以及自然语言处理等领域。具体而言,它可以用来增强视觉问答系统的准确性,改善语音识别效果,甚至辅助医生做出更精准诊断决策等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值