【跟李沐学AI】week6a | NiN GoogleLeNet

26 网络中的网络 NiN

背景问题:
卷积层需要较少的参数,但是卷积层后面的第一个全连接层往往需要较多的参数,VGG达到了102M个。过量的参数很容易造成过拟合,以及把训练时间都花在了访问内存上。所以NiN的思想就是完全不要全连接层,用卷积层来替代。

NiN块
(之后的网络多是提出局部的一个块架构)
使用1×1的卷积来起到全连接层的作用,输出形状和卷积层输出一样。
在这里插入图片描述

NiN架构

  • 无全连接层
  • 交替使用NiN块和步幅为2的最大池化层(逐步减少高宽和增大通道数
  • 最后使用全局平均池化层得到输出(输出通道数就是类别数目
  • 在这里插入图片描述
    NiN的意义
    两层1×1的卷积层为每个像素增加了非线性性,通道数作为全连接层,使用全局平均池化替代全连接层,不容易过拟合,可以有更少的参数个数。

27 含并行连结的网络 GoogleLeNet

背景问题:卷积层的大小怎么选?
在这里插入图片描述
Inception块
通过4个路径从不同层面抽取信息,每个通道不改变高和宽,然后在输出通道数中合并,这样可以抽取到所有的层面的信息。
在这里插入图片描述
通道数的变化
白色的卷积是用来改变通道数,蓝色的是用来抽取空间信息的。可以通过降低通道数来控制模型复杂度,且每条路径的通道可能不一样。
在这里插入图片描述
因此,在增加信息丰富性的同时,Inception块甚至比3×3的参数和计算量还要小几倍
在这里插入图片描述
GoogleLeNet
五段(conv+pooling,一个stage高宽降低一半),9个Inception块
在这里插入图片描述
GoogleLeNet大量使用1×1的卷积,并且使用了全局平均pooling,但是最后使用FC,所以不会像NiN一样通道数必须等于分类数。

段1&2,高宽减少8倍,通道数增加到64倍。
在这里插入图片描述

段3:使用两个Inception,规律比较难总结,通道分配是不同的。
在这里插入图片描述

段4 & 段5:使用5个、2个Inception块,最后得到1024维的特征输出。
在这里插入图片描述
Inception的后续变种

  • v2: Inception-BN 使用batch normalization
  • v3:修改了inception,段三段四段五中使用了不同的卷积。(效果较好)
  • v4:加入了残差连接(resnet)

总结
inception可以在4条不同超参数和卷积层、池化层路径中抽取不同信息,并且模型参数比较小,参数较少一点。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值