02-数据科学的基础:数据科学分析法介绍

本文介绍了数据科学分析的10大类别,包括指导性分析、预测模型、趋势分析、聚类分析、分类、异常现象分析、降维、特征选择和创建、验证模型及融合模型。详细讲解了每种分析法的概念、应用和常用方法,如钟形曲线、预测模型的决策树、趋势分析的折线图和聚类分析的K-means算法等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这一篇,我们会具体介绍如何进行数据分析。

数据科学分析可分为以下有10大类:
1.指导性分析 Descriptive Analysis
2.预测模型 Predictive Model
3.趋势分析 Trend Analysis
4. 聚类分析 Clustering
5.分类 Classifying
6. 异常现象分析 Anomalies
7. 降维 Dimension Reduction
8.特征选择和创建 Feature Selection and Creation
9. 验证模型 Validating Models
10. 融合模型 Aggregating Models


那下面我们来具体的介绍一下每个类别的分析:

1. 指导性分析 Descriptive Analysis
一般情况下我们会通过数据成像的方式来初步进行指导性分析。指导性分析的数据成像会分为以下4种类型。

1. 钟形曲线(Bell Curve) :钟形曲线理论上的正态分布曲线,数据曲线是一条中间高,两边逐渐下降并且完全对称的曲线。
钟形曲线
2. 正偏态(Positive Skew):正偏态分布不对称。分布高峰偏左,长尾向右延伸的偏态分布成为正偏态。
正偏态
3. 负偏态(Negitave Skew) : 又称“左偏态” 是指在一个不对称或者偏态的分布图中,次数分布的高峰偏右,长尾则从有主见延申到左边。
负偏态
4. U型曲线(U-Shape): 整个图像成字母U的一种曲线。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值