图像分割(一)Contour Detection and Hierarchical Image Segmentation

本文介绍了图像分割中的关键算法,包括gPb(全局边界概率)、OWT(定向分水岭变换)和UCM(超图轮廓映射)。gPb利用像素的梯度和相似度计算边界概率;OWT通过最大方向能量确定边界并应用改进的分水岭变换;UCM通过区域差异性进行层次分割,实现不同细致程度的图像边缘提取。
摘要由CSDN通过智能技术生成

三个部分:
gPb: global probability of boundary
OWT: Oriented Watershed Transform
UCM: Ultrametric Contour Map
针对各个像素,计算其作为边缘的权值(可能性)→用改进后的分水岭算法得到区域和边界→对得到的边界根据其差异性分层,通过设置阈值来得到细致程度不同的边界

gPb: 由mPb和sPb加权求和得到。
mPb:
||计算G(x,y,θ)
对灰度图任意一个像素,以其为圆心做圆,并用角度为θ的直径将圆平分为两个半圆。
对两个半圆分别做直方图统计,用得到的数据计算卡方距离:
X^2 (g,h)=1/2 ∑_i〖(g(i)-h(i))〗^2/(g(i)+h(i))
X^2 (g,h)即为G(x,y,θ),用其来表达θ方向上像素点的梯度。
||计算mPb
将图片分解到四个通道:brightness,color a,color b,texture,得到四幅图像。分别计算四个图像的G(x,y,θ)。
使用多个圆形直径长度δ(作者使用了三个:δ/2,δ,δ),对每一个δ计算其G(x,y,θ)。
mPb(x,y,θ)=∑s∑_iα(i,s) G_(i,σ(i,s) ) (x,y,θ)
公式含义:对每一个像素,对其不同直径下的四个通道的G(x,y,θ)进行加权计算。
sPb:
||计算W_ij
做对称矩阵W:W_ij=exp⁡(-(_p∈ij^max){mPb(p)}/ρ)表征像素之间的相似度。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值