三个部分:
gPb: global probability of boundary
OWT: Oriented Watershed Transform
UCM: Ultrametric Contour Map
针对各个像素,计算其作为边缘的权值(可能性)→用改进后的分水岭算法得到区域和边界→对得到的边界根据其差异性分层,通过设置阈值来得到细致程度不同的边界
gPb: 由mPb和sPb加权求和得到。
mPb:
||计算G(x,y,θ)
对灰度图任意一个像素,以其为圆心做圆,并用角度为θ的直径将圆平分为两个半圆。
对两个半圆分别做直方图统计,用得到的数据计算卡方距离:
X^2 (g,h)=1/2 ∑_i〖(g(i)-h(i))〗^2/(g(i)+h(i))
X^2 (g,h)即为G(x,y,θ),用其来表达θ方向上像素点的梯度。
||计算mPb
将图片分解到四个通道:brightness,color a,color b,texture,得到四幅图像。分别计算四个图像的G(x,y,θ)。
使用多个圆形直径长度δ(作者使用了三个:δ/2,δ,δ),对每一个δ计算其G(x,y,θ)。
mPb(x,y,θ)=∑s∑_iα(i,s) G_(i,σ(i,s) ) (x,y,θ)
公式含义:对每一个像素,对其不同直径下的四个通道的G(x,y,θ)进行加权计算。
sPb:
||计算W_ij
做对称矩阵W:W_ij=exp(-(_p∈ij^max){mPb(p)}/ρ)表征像素之间的相似度。