Dynamic Region-Aware Convolution

摘要

文章提出了一种名字叫动态区域感知卷积(DRConv)的新卷积,它可以自动将多个滤波器分配给具有相似特征表示的空间区域。标准卷积层通常通过增加滤波器的数量提取更多信息,但有较高的计算成本。而DRConv可以自动分配多个滤波器到具有相似特征表示的相应空间区域,不仅可以提高卷积的表示能力,而且保持了与标准卷积相似的计算成本和平移不变性。
论文地址:Dynamic Region-Aware Convolution

思想

主流卷积操作多使用权重共享的方式,通过增加channel或使用更多filters增加模型的深度,来提取更多信息。这样会造成计算上有更大的开销,也更难优化。局部卷积分别处理每个位置的特征,但使用了更多的参数,破坏了平移不变性,且不同的输入样本所使用的filters是共享的,导致模型对不同样本中的特殊特征不敏感。
基于这些问题文章提出了区域动态感知卷积,如图1所示:
Alt

图1

DRConv中区域个数为 m m m。DRConv使用标准的 k × k k\times k k×k卷积从 X X X获得guided featrue;然后使用 G ( ⋅ ) G(\cdot) G() filter generator module获得 m m m个filters。如guided mask所示,空间域被分为m个区域,每个区域拥有一个对应的filter W i W_i Wi(其在此区域中被共享)。之后在这些区域中使用使用各自对应的filter进行 k × k k\times k k×k卷积,获得输出 Y Y Y
DRConv可以动态的为使用可学习instructor划分的不同空间域分配对应的filters,因此DRConv在拥有强大的语义表达能力的同时,保证了平移不变性。

具体方法

Dynamic Region-Aware Convolution

定义guided maskKaTeX parse error: Expected '}', got 'EOF' at end of input: …S_0,...,S_{m-1}来表示将空间维度划分为的 m m m个区域,每个区域 S t , t ∈ [ 0 , m − 1 ] S_t,t\in [0,m-1] St,t[0,m1]只对应一个filter。卷积核集 W = [ W 0 , . . . , W m − 1 W=[W_0,...,W_{m-1} W=[W0,...,Wm1其中的filter W t ∈ R C W^t\in R^C WtRC对应与区域 S t S_t St ,那么第o个channel的输出特征可以表示为:
Alt
DRConv主要分为两步:
1.使用可学习的guided mask对空间进行区域划分。从图像语义角度来讲,就是将语义相似的特征分配到同一个区域内。
2.在每个区域内,使用通过filter generator module生成的filters中对应于该区域的filter,在区域内共享这个filter进行卷积操作。

Learnable guided mask

这个模块的作用是划分出使用同一个filter的区域,即,确定filter在空间维度上的分布。

Dynamic Filter: Filter generator module

filter generator module G ( ⋅ ) G(\cdot) G()则需要根据不同输入样本具有的不同特征,动态的为不同区域设计生成对应的filters。
Alt

图2

DRConv中filter生成器结构如图2所示,首先使用AAP(自适应平均池化)将 X X X进行下采样到 k × k k\times k k×k大小。然后输入第一个 1 × 1 1\times 1 1×1 卷积层,其使用 s i g m o i d ( ⋅ ) sigmoid(\cdot) sigmoid()作为激活函数,得到的大小为 k × k × m 2 k\times k\times m^2 k×k×m2 。接着继续输入第二个 1 × 1 1\times 1 1×1卷积层,不使用激活函数,得到的大小为 k × k × ( m × O × C ) k\times k\times (m\times O\times C) k×k×(m×O×C),即生成了 m m m个大小为 k × k k\times k k×k 的filters。

实验

Alt

图3

图3展示了在ImageNet分类任务上,将不同的轻量级网络的卷积替换为DRConv的实验结果,可以看出DRConv能够显著提升模型的性能,并且对于不同的网络都是有用的。

在人脸识别、目标检测和分割任务上,相比于baseline,本文方法能够明显提高性能,证明了DRConv的有效性。
在不同模型大小下,和baseline方法的对比,本文的方法在小模型上能够实现更显著的性能提升,因为通过用DRConv取代标准卷积,小型模型将显著提高其建模语义信息的能力,从而获得更好的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值