Local Differential Privacy for Deep Learning

该博客探讨了在深度学习中应用局部差分隐私(LDP)以保护众包数据训练过程中的隐私。文章介绍了名为LATENT的新算法,它结合了随机响应的原理,提出了一种效用增强随机化(UER)协议。该算法通过改进的优化一元编码(MOUE)和UER,优化了二进制字符串的随机化过程,同时保持了模型的效用。文章详细阐述了MOUE和UER的工作机制,并讨论了如何在卷积神经网络中集成LATENT层以实现差分隐私。此外,还提到了与现有方法如RAPPOR的比较和实际代码实现。
摘要由CSDN通过智能技术生成

​​​​​​​motivation:众包数据进行训练过程中,容易造成隐私泄漏。

methods:

  • 提出的新算法(LATENT)应用了随机响应的属性——LDP设置和算法的层结构可以使得在不同层级进行隐私保护交流
  • 设计了一种新的协议,称为效用增强随机化(UER)
    (1)首先对优化的一元编码协议(OUE)进行了改进,提出了一种新的LDP协议modified OUE(MOUE),增强了二进制字符串随机化的灵活性。
    (2)OUE是一个LDP协议,遵循随机1和0的不同直觉,以提高效用。
    (3)MOUE通过引入一个额外的系数α(隐私预算系数)来实现改进的灵活性,该系数在选择随机化概率时提高了灵活性。
  • 然后我们遵循MOUE背后的动机,提出了在高灵敏度的长二进制字符串随机化过程中保持效用的UER。

提出了一个LATENT层,位于flattening层之后,通过加入符合差分隐私的操作之后,当成全连接层的输入。卷积神经网络的结构被划分为:(1)卷积模块(2)随机化模块(3)全连接层。

局部差分隐私的操纵攻击是指攻击者试图影响隐私保护机制以获取敏感信息的行为。该攻击针对局部差分隐私机制的特性和缺点进行利用,以窃取隐私数据或干扰数据发布的结果。 局部差分隐私的目标是在保护个体隐私的前提下,提供对于整体数据集的有意义的分析结果。然而,攻击者可通过操纵自己的个体数据或其他数据的投入,来影响数据分析结果。例如,攻击者可能故意修改或篡改自己的数据,以改变数据发布的结论,或者通过协作或串通他人进行攻击。 操纵攻击的目的是干扰数据发布的结果,以推断出更多的隐私信息或获得误导性的数据分析结果。攻击者可能通过加入虚假的数据或者删除真实的数据来扰乱数据集的特性,使得发布的结果偏离真实情况。这种攻击可能会导致分析人员得出错误的结论或泄露隐私信息。 对抗局部差分隐私操纵攻击的方法包括对数据进行更严格的验证和校验、采用更复杂的算法进行数据发布,以及增加对攻击行为的监测和检测。此外,用户和数据发布者在数据分享和数据发布过程中需要保持警惕,增强对潜在攻击的认识和防范意识。 总之,局部差分隐私的操纵攻击是一种针对隐私保护机制的攻击行为,可通过操纵个体数据或其他数据的投入来干扰数据发布的结果。为了应对这种攻击,需要采取相应的安全措施和对攻击行为进行检测和防范。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值