16、能源领域研究与应用综述

能源领域研究与应用综述

在当今社会,能源问题是全球关注的焦点,涉及到经济发展、环境保护和社会可持续性等多个方面。众多学者和研究人员在能源的各个领域展开了深入研究,涵盖了能源建模、预测、生产、利用以及相关技术的开发与应用等多个层面。

能源建模与预测
  1. 多部门能源建模 :Reedman 等人(2021)进行了多部门能源建模的研究,旨在综合考虑不同部门之间的能源交互和影响,为能源规划和管理提供更全面的视角。这种建模方法有助于理解能源在不同产业、区域之间的流动和分配,从而制定更有效的能源政策和策略。
  2. 能源预测方法 :在能源预测方面,有多种技术和模型被应用。例如,Athanasopoulos 等人(2017)提出了基于时间层次结构的预测方法,通过考虑不同时间尺度上的能源需求变化,提高了预测的准确性。还有一些研究利用机器学习和深度学习算法进行能源预测,如 Alduailij 等人(2021)对智能建筑的峰值能源需求进行预测,以及 Wang 等人(2023)使用 CNN - LSTM 模型结合多模态信息对中国的电力需求进行预测。这些方法能够处理复杂的能源数据,捕捉数据中的潜在模式和趋势,为能源供应和管理提供更可靠的依据。
<
研究人员 研究内容 年份
Reedman 等 多部门能源建模 2021
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值