从LeNet 整体了解卷积神经网络模型的定义流程

可以看看nn.Conv2d的用法,以及卷积层和全连接层的配合


```python
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 6, 5), #Conv2d用来定义卷积层,最基本的(步幅和填充为可选项,bias默认为True)只需要定义输入通道数,输出通道数和卷积核尺寸,完全不用管每次进入卷积层的批量大小batch_size,也就是样本数,和nn.Linear很像,也是不管样本数,只需要指出输入的特征数和输出的特征数就行
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2), # kernel_size, stride
            nn.Conv2d(6, 16, 5),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2)
        )
        self.fc = nn.Sequential(
            nn.Linear(16*4*4, 120),#不管样本数,只需要指出输入的特征数和输出的特征数就行,这里的16指的是通道数,4是经过两次卷积两次池化后图片的高和宽,这里16*4*4就是压平了的每个样本的特征
**            nn.Sigmoid(),
            nn.Linear(120, 84),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )

    def forward(self, img):#img指的是一批多通道(包含单通道)图片,所以说是个四维数组(一个批量样本数batch_size,每个输入图片的通道数channel_in,每个通道上图片的高H,每个通道上图片的高W)
        feature = self.conv(img)#feature与输入的img对应,指的是经过卷积处理后的一批多通道(包含单通道)图片,所以说是个四维数组(一个批量样本数batch_size未变!,每个图片的输出通道数channel_out,每个通道上图片的高H‘,每个通道上图片的高W’)
        output = self.fc(feature.view(img.shape[0], -1))#经过卷积层处理得到的feature是一个四维数组,而全连接层只能处理二维数组(batch_size,每个样本的特征横向排列),所以我们要将四维数组变为二维数组(batch_size,卷积输出通道*卷积处理后的高H'*卷积处理后的宽W'),这里我们用view实现,img.shape[0]代表的就是batch_size)
        return output

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值