傅里叶变换实现了信号的时域到频域的变换,然而由于傅里叶变换不具备空间位置信息,因此得到的是一个全局的频率谱,而并没有针对特定位置的频率进行分析。为了解决这一问题,因此提出了加窗傅里叶变换。加窗傅里叶变换将非平稳信号看着是一系列短时平稳的信号的叠加,而短时性则可以通过时域加窗来实现,加窗傅里叶变换公式如下:
其中g(x)为一个窗口函数。从上面的定义可以看出,窗口函数应该是一个低通滤波器才能平稳信号进行分离。然而,当频率固定时,由于不能确定非平稳信号的组成成分中包含的信号频率怎样分布,因此,加窗傅里叶变换不能很好地对信号进行分离。不过加窗傅里叶变换对小波的引出起了辅助作用。
上式是加窗傅里叶变换的一个性质。从上面的公式可以看出,加窗傅里叶变换不应该改变原来信号的总能量,也就是能够对信号进行分析和相应的重构。
下面先给出小波变换的一个重要的思想——多分辨分析的严格定义形式:
如果L2空间下的闭子空间序列满足下列条件