1007. 素数对猜想 (20)
让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数。显然有 d1=1 且对于n>1有 dn 是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N (< 105),请计算不超过N的满足猜想的素数对的个数。
输入格式:每个测试输入包含1个测试用例,给出正整数N。
输出格式:每个测试用例的输出占一行,不超过N的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
比较简单:
#include <iostream>
using namespace std;
bool isPrime(int a) {
if(a==1) return false;
for(int i=2; i*i<=a; ++i) {
if(a%i==0) return false;
}
return true;
}
int main()
{
int N;
int num = 0;
cin >> N;
for(int i=3; i<=N; ) {
int j;
for(j=i+2; !isPrime(j); j+=2);
//此处得注意,万一j+2后越界了,不可以算作以一个有效值
if(j==i+2 && j<=N) ++num;
i = j;
}
cout << num;
return 0;
}
值得一提的是,在之前PTA的时候我遇到这一题,写的比较复杂
#include <iostream>
#include <vector>
using namespace std;
bool fuc(int n) {
for(int i=2; i*i<=n; ++i) {
if(n%i==0)
return true;
}
return false;
}
int main() {
vector<int> res;
int num,count=0;
cin>>num;
if(num>3) {
for(int i=3; i<=num; ++i) {
if(!fuc(i)) res.push_back(i);
}
for(auto i=res.begin()+1; i!=res.end(); ++i) {
if(*i-*(i-1)==2) ++count;
}
}
else {
count=0;
}
cout<<count;
return 0;
}