三、特征值分布–盖尔圆、幂迭代
1. 盖尔圆
列盖尔圆: A与AT的特征值相同,于是由A 的全体特征值都在 AT 的 n 个盖尔圆构成的并集中,同时称 AT 的盖尔圆为 A 的
连通盖尔圆: 相交的盖尔圆连通构成的区域,区域内有几个盖尔圆就有几个特征值
(1)盖尔圆特征值隔离—结合列盖尔圆
(2)盖尔圆特征值隔离—结合相似矩阵,特征值不变特性
选取对角阵:D = diag(d1, d2, · · · , dn),其中di > 0 (i = 1, 2, · · · , n),则A与B = D^-1AD相似且有相同特征值, 再隔离矩阵B特征值
- **如何选取对角阵D:**适当选取 D 的元素值,可以使 B 的某个圆盘半径相对减少。若要使 B 的第 i 个盖尔圆半径缩小,其余盖尔圆适量放大,可取di > 1,其他元素值取 1。增大孤立圆的半径,减小相交圆半径
特别注意复数矩阵盖尔圆表示:
2. 幂迭代
五次或五次以上的多项式方程一般是没有公式求解的。所以对于阶数较大的矩阵,其特征值的计算是非常困难的,因而就要研究特征值的各种近似求法。仅要求得到矩阵的按模最大的特征值(或称为矩阵的主特征值)和相应的特征向量,如线幂迭代法(或简称幂法)就是解决此类问题的一种有效方法。