伯努利、辛钦大数定律、中心极限定理

大数定律

一个随机变量序列 X 1 、 X 2 . . . X n . . . X_{1}、X_{2}...X_{n}... X1X2...Xn...,a为常数,若对任意正数 ε \varepsilon ε lim ⁡ n → ∞ P { ∣ X n − a ∣ < ε } = 1 \lim_{n \to \infty} P\left \{ |X_{n}-a|<\varepsilon \right \} = 1 limnP{Xna<ε}=1 。则称序列 X 1 、 X 2 . . . X n . . . X_{1}、X_{2}...X_{n}... X1X2...Xn...依概率收敛与a, 记作 X n ⟶ a ( n → ∞ ) X_{n}\longrightarrow a(n\to \infty ) Xna(n)

对任意的 ε \varepsilon ε>0, 当n充分大时," X n X_{n} Xn与a的偏差大于等于 ε \varepsilon ε
这一事件发生的概率很小(即概率意义上收敛于0)

伯努利大数定律

n A n_{A} nA是n次独立重复实验中事件A发生的次数,p是事件A在每次实验中发生的概率,则对任意正数 ε \varepsilon ε,有 lim ⁡ n → ∞ { ∣ n A n − p ∣ < ε } = 1 \lim_{n\to \infty}\left\{|\frac{n_{A}}{n} -p|<\varepsilon \right \} = 1 nlim{nnAp<ε}=1,由切比雪夫不等式很容易证明,参见上篇关于切比雪夫文章。

一个事件A在独立重复实验发生的频率 n A n \frac{n_{A}}{n} nnA依概率收敛与事件A发生的概率p,
以严格的数学形式表达了频率的稳定性。在实际应用中,当实验次数n很大时,便可李勇事件A发生的频率去近似代替事件A发生的概率。

辛钦大数定律

一个随机变量序列 X 1 、 X 2 . . . X n . . . X_{1}、X_{2}...X_{n}... X1X2...Xn...,相互独立,服从同一分布,且具有数学期望 E( X i ) = μ X_{i})=\mu Xi)=μ, i = 1, 2, 3…, 则对任意正数 ε \varepsilon ε, 有 lim ⁡ n → ∞ P { ∣ 1 n ∑ i = 1 n X i − μ ∣ < ε } = 1 \lim_{n \to \infty}P \left \{ |\frac{1}{n}\sum_{i=1}^{n} X_{i}-\mu|<\varepsilon \right \} = 1 nlimP{n1i=1nXiμ<ε}=1

随着样本数量n增大,样本均值几乎必然等于总体真实的均值,从而为统计推断中依据样本平均数估计总体平均数提供了理论依据
例如,要估计某地区的平均亩产量,可收割有代表性的地块 n块,计算其平均亩产量,则当 n较大时,可用它作为整个地区平均亩产量的一个估计

中心极限定律

在这里插入图片描述

中心极限定理告诉我们,任何独立、 同分布的大量随机变量序列和的均值也近似服从正态分布,只要样本容量够大,样本估计值就趋于正态分布,所以我们可以按 正态分布进行推断

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
在 Matlab 中,可以通过生成多个二项分布的随机变量来验证中心极限定理。二项分布是多个独立的伯努利试验的结果,每个试验有两个可能的结果(成功或失败),且每个试验的成功概率相同。根据中心极限定理,当独立同分布的随机变量数量足够大时,这些随机变量的平均值近似服从正态分布。因此,在 Matlab 中,可以通过以下步骤验证中心极限定理: 1. 生成多个二项分布的随机变量,每个随机变量代表一个伯努利试验的结果。可以使用 binornd 函数生成二项分布随机变量,该函数的参数包括试验次数、成功概率和随机变量数量。 2. 计算多个随机变量的平均值,即计算所有随机变量的和除以随机变量数量。可以使用 mean 函数计算平均值。 3. 重复步骤 1 和步骤 2 多次,每次生成不同的随机变量,并计算平均值。可以使用 for 循环实现重复操作。 4. 绘制平均值的直方图,并将其与正态分布进行比较。可以使用 hist 函数绘制直方图,使用 normpdf 函数绘制正态分布曲线。 以下是一个简单的 Matlab 代码示例,用于验证中心极限定理: ```matlab n = 100; % 试验次数 p = 0.5; % 成功概率 N = 10000; % 随机变量数量 m = 1000; % 重复次数 means = zeros(m, 1); % 存储每次计算的平均值 for i = 1:m x = binornd(n, p, N, 1); % 生成二项分布随机变量 means(i) = mean(x); % 计算平均值 end hist(means, 30); % 绘制平均值的直方图 hold on; mu = n * p; % 计算正态分布的均值 sigma = sqrt(n * p * (1 - p)); % 计算正态分布的标准差 x = linspace(mu - 4 * sigma, mu + 4 * sigma, 100); plot(x, normpdf(x, mu, sigma) * (means(2) - means(1)), 'r', 'LineWidth', 2); % 绘制正态分布曲线 hold off; ``` 在这个示例中,我们生成了 1000 组包含 10000 个二项分布随机变量的数据,每组数据都计算了随机变量的平均值。然后,我们绘制了平均值的直方图,并将其与正态分布进行比较。如果中心极限定理成立,我们应该看到直方图与正态分布曲线非常接近。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jubary

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值