特征值分解

特征值和特征向量的几何意义

矩阵和向量作乘法,向量会变成另一个方向或长度的新向量,主要会发生旋转、伸缩的变化

如果矩阵乘以某些向量后,向量不发生旋转变换,只产生伸缩变换

那么就说这些向量是矩阵的特征向量,伸缩的比例就是特征值

特征值和特征向量的数学描述

如果 A 是 n 阶方阵,数 λ 和 n 维非零列向量 x 是 A 的对应于特征值的特征向量,有:

A x = λ x Ax = λx Ax=λx

也可以写成:

( A − λ E ) x = 0 (A-λE)x = 0 (AλE)x=0

特征值分解

特征值分解就是将一个矩阵分解成:

A = P Λ P − 1 A=PΛP^{−1} A=PΛP1

P 是这个矩阵 A 的特征向量组成的矩阵

Λ 是特征值组成的对角矩阵,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向。

特征值分解的过程

解下面的线性方程组:

∣ A − λ E ∣ = 0 |A − λE| = 0 AλE=0

即:
在这里插入图片描述
可以解出 n 个特征值: λ 1 , λ 2 , . . . , λ n λ_1 , λ_2 , ... , λ_n λ1,λ2,...,λn

再把 n 个特征值代入下面的式子:

( A − λ E ) x = 0 (A - λE)x = 0 (AλE)x=0

可以求出 n 个对应的特征向量: P 1 , P 2 , … , P n P_1 , P_2 , … , P_n P1,P2,,Pn

对于每一个特征值与特征向量满足:

A x i = λ i x i Ax_i=λ_ix_i Axi=λixi

令:
在这里插入图片描述

对于 n 个特征值和特征向量可写成:

在这里插入图片描述

可得:

A P = P Λ AP = PΛ AP=PΛ

如果矩阵 P 可逆,有 A = P Λ P − 1 A = PΛP^{−1} A=PΛP1

参考资料

方阵的特征值分解:https://zhuanlan.zhihu.com/p/40144787
特征值分解、奇异值分解、PCA概念整理:https://blog.csdn.net/jinshengtao/article/details/18448355

  • 25
    点赞
  • 77
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值