大数定律及中心极限定理6

(今天继续努力学习!使劲学!)

目录

一、大数定律

1. 弱大数定理(辛钦大数定律)

2. 辛钦大数定律的推论-->伯努利大数定律

二、中心极限定理

1. 独立同分布的中心极限定理

2. 李雅普诺夫定理 

3. 蒂莫夫-拉普拉斯定力


这两个定理是概率论中非常重要的定理,在理论研究和应用中起着非常重要的作用。极限的引入可以让我们衍生到大量数据当中,以便我们在海量数据中分析数据的特征。

一、大数定律

1. 弱大数定理(辛钦大数定律)

若一组随机变量服从统一分布,且有数学期望μ,作前n个变量的算术平均,则对一任意小的数,大于零,满足算术平均依概率收敛与μ

这是一个随机事件,弱大数定理告诉我我们,对于独立同分布、具有数学期望的一组随机变量,当n很大时,它们的算术平均很可能接近于该组随机变量的数学期望。

2. 辛钦大数定律的推论-->伯努利大数定律

依据小概率事件原理,上述事件发生的概率很小,实际推断可知,当试验次数很大时,可以使用事件的频率来代替事件的概率。

论证了频率的稳定性,频率的稳定性是概率稳定性的客观基础。

二、中心极限定理

中心极限定理的客观背景是,在实际生活中,会有多种随机变量,是由大量的相互独立的随机因素的综合影响所形成的的,而其中每一个个别因素在总的影响中起到的作用又非常小,这种随机变量近似地服从正态分布。

1. 独立同分布的中心极限定理

通常,我们有时候很难求出n个变量之和的分布函数,这时候,就可以利用正态分布给出其近似地分布。利用正态分布对n个变量之和作分析或作计算是非常便利的。

这是大样本统计推断的基础。

2. 李雅普诺夫定理 

当每个随机变量的数学期望和方差都不相同的时候,使用此定理进行计算。

只要满足定理的条件,那么它们的和当n很大时,就近似服从正态分布,这也是正态随机变量在概率论中占有重要地位的原因。

在很多实际应用中,很多问题都可以表示成很多个独立的随机变量之和。

3. 蒂莫夫-拉普拉斯定力

这个定理表明,正态分布是二项分布的极限分布,当n充分大时,可以利用正态分布来计算

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值