【原理】机器学习中的最小二乘法公式推导过程

本文来自《老饼讲解-BP神经网络》https://www.bbbdata.com/

最小二乘法是基本的线性求解问题之一,本文介绍最小二乘法的原理,和最小二法求解公式的推导

一、什么是最小二乘法

下面简单讲述最小二乘问题与最小二乘法求解公式。

1.1. 什么是最小二乘法

现有A,b,求一x,使得Ax与b的误差最小,即:
min E ( x ) = ( A x − b ) T ( A x − b ) \displaystyle \text{min}\textbf{E}(x) =(Ax-b)^T(Ax-b) minE(x)=(Axb)T(Axb)

该问题称为最小二乘问题

1.2. 最小二乘法的求解公式

最小二乘法问题的求解公式为:
x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)1ATb

二、最小二乘法求解公式的推导

推导思路很简单,只要令E(x)偏导为 0,再进行求解就可以。
最小二乘法求解公式-具体推导过程如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

即有上述最小二乘法求解公式:
x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)1ATb


相关链接:

《老饼讲解-机器学习》:老饼讲解-机器学习教程-通俗易懂
《老饼讲解-神经网络》:老饼讲解-matlab神经网络-通俗易懂
《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老饼讲解-BP神经网络

请老饼喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值