本文来自《老饼讲解-BP神经网络》https://www.bbbdata.com/
随机森林模型是机器学习中常用的模型之一,它是决策树模型的一个延伸。
本文简单快速直接地介绍什么是随机森林模型以及如何实现一个随机森林模型。
一、什么是随机森林模型
1.1.随机森林模型介绍
随机森林模型顾名思义,就是有很多棵树的模式,这里的树,指的是决策树。
它训练了许多棵决策树,然后集合在一起,作为一个集成模型进行决策。
如图所示,随机森林的模型表达式如下:
y = 1 k [ t 1 . prob ( x ) + t 2 . prob ( x ) + . . . + t k . prob ( x ) ] \text{y}= \dfrac{1}{k} \left [ \text{t}_1.\text{prob}(x)+\text{t}_2.\text{prob}(x)+...+\text{t}_k.\text{prob}(x) \right ] y=