matlab精确径向基(神经网络)使用教程

文档仅供查阅和简单了解,深入了解请关注《老饼讲解神经网络

    精确径向基神经网络在matlab中使用newrbe建立。这里小编不得不说,newrbe实际是newrb(径向基)神经网络的特殊情况,newrbe的结构与newrb完全一样,只不过隐节点是固定个数(与样本个数相同),而newrb则会使用OLS算法逐个添加神经元,直到误差小于指定误差为止。即当newrb拥有与样本个数一样的神经元时,此时它就是newrbe

     为什么叫精确径向基神经网络?因为当径向基的隐节点个数与样本个数相同时,它对样本数据的预测误差将是0!    

    下面翻译matlab的doc文档给大家,以供更全面学习使用(为方便大家理解,本人作了些少改动)。

语法

  net = newrbe(P,T,spread)


说明
    精确径向基神经网络可以用于拟合函数。newrbe 非常快的设计出一个在样本上0错误的径向基神经网络。
net = newrbe(P,T,spread) 需要2或3个输入参数

入参说明
PR行Q列的输入矩阵,R个输入变量,Q个样本。
TS行Q列的目标输出矩阵,S个输出变量,Q个样本。
spread径向基函数的扩展系数(默认=1.0)

    并返回一个新的精确径向基神经网络
    spread越大,拟合出来的函数会更加平滑。但太大的spread会引起数值问题。

例子:
    对于给定的输入P和目标T,设计一个精确径向基神经网络

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrbe(P,T);

    网络对于新输入的预测:

P = 1.5;
Y = sim(net,P);

算法:
      newrbe
创建一个2层的神经网络。第一层拥有径向基神经元,并用dist来计算它的加权输入和用netprod来计算它的网络输入。第2层是线性神经元,用dotprod计算它的加权输入和netsum计算网络输入,两层都有阈值。
      newrbe 将第一层的权重设置为P',第一层的阈值全设为0.8326/spread,使权重输入为+/–spread时,径向基的值为0.5。
      第二层的权重 IW{2,1} 和阈值 b{2}这样求得:先拟合第一层的输出A{1},然后对下面的表达式求解:
                                  W{2,1} b{2}] * [A{1}; ones] = T

相关文章

​《BP神经网络梯度推导》

​​​​​​《BP神经网络提取的数学表达式》

《一个BP的完整建模流程》

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老饼讲解-BP神经网络

请老饼喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值