随笔:卡尔曼滤波前置知识(概统知识的复习)

下一篇文章打算好好讨论一下卡尔曼滤波器,在此之前,先需要对相关的前置的知识进行一个复习,主要是概率统计的知识。

1.数学期望

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
对于离散型的随机变量,数学期望是其各个离散结果的加权平均数,即
E ( X ) = ∑ 1 ∞ x k p k E(X) = \sum ^\infty_1 x_k p_k E(X)=1xkpk
对于连续型的随机变量,数学期望是其密度函数f(x)的反常积分,即
E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X) = \int ^{+\infty}_{-\infty} xf(x) {\rm d}x E(X)=+xf(x)dx
数学期望具有以下性质:

C C C是常数, E ( C ) = C E(C)=C E(C)=C
E ( a X ) = a E ( X ) E(aX)=aE(X) E(aX)=aE(X)
E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
④ 若 X X X Y Y Y相互独立,则 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

2.方差

方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。即方差是表明随机变量X在期望E(X)附近的集中程度的数字特征。
方差是 E [ X − E ( X ) ] 2 E[X-E(X)]^2 E[XE(X)]2,化简可得:
D ( X ) = E [ X − E ( X ) ] 2 = E ( X 2 ) − ( E ( X ) ) 2 D(X)= E[X-E(X)]^2=E(X^2)-(E(X))^2 D(X)=E[XE(X)]2=E(X2)(E(X))2
且对于离散型的随机变量,其方差为:
D ( X ) = ∑ 1 ∞ [ x k − E ( X ) ] 2 p k D(X) = \sum ^\infty_1 [x_k - E(X)]^2 p_k D(X)=1[xkE(X)]2pk
对于连续型的随机变量,其方差为:
D ( X ) = ∫ − ∞ + ∞ [ x k − E ( X ) ] 2 f ( x ) d x D(X) = \int ^{+\infty}_{-\infty} [x_k - E(X)]^2 f(x) {\rm d}x D(X)=+[xkE(X)]2f(x)dx
方差具有以下性质:

C C C为常数, D ( C ) = 0 D(C)=0 D(C)=0
D ( a X + b ) = a 2 D ( X ) D(aX+b)=a^2D(X) D(aX+b)=a2D(X)
③ 若 X X X Y Y Y独立,则 D ( X ± Y ) = D ( X ) + D ( Y ) D(X\pm Y)=D(X)+D(Y) D(X±Y)=D(X)+D(Y)

3.协方差

对于两个随机变量,我们想要探讨这两个随机变量中间是否存在关联,以及其关联性程度的高低,而协方差就是一种描述两个随机变量之间的关系的数学特征。
协方差的表达式为
C o v ( X , Y ) = E [ [ X − E ( X ) ] [ Y − E ( Y ) ] ] = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E[[X-E(X)][Y-E(Y)]]=E(XY)-E(X)E(Y) Cov(X,Y)=E[[XE(X)][YE(Y)]]=E(XY)E(X)E(Y)
并且,方差可以看做是两个相同的随机变量的协方差,即
C o v ( X , X ) = D ( X ) Cov(X,X)=D(X) Cov(X,X)=D(X)
协方差具有以下性质

C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y)=Cov(Y,X) Cov(X,Y)=Cov(Y,X)
C o v ( X , a ) = 0 Cov(X,a)=0 Cov(X,a)=0
C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
C o v ( X + Y , Z ) = C o v ( X , Z ) + C o v ( Y , Z ) Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z) Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)
C o v ( ∑ i = 1 n a i X i , ∑ j = 1 m b j X j ) = ∑ i = 1 n ∑ j = 1 m C o v ( X i , Y i ) Cov( \sum ^n_{i=1} a_iX_i ,\sum ^m_{j=1} b_jX_j)= \sum ^n_{i=1} \sum ^m_{j=1} Cov(X_i,Y_i) Cov(i=1naiXi,j=1mbjXj)=i=1nj=1mCov(Xi,Yi)
D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 D ( X ) D ( Y ) D(X \pm Y) = D(X)+D(Y) \pm 2D(X)D(Y) D(X±Y)=D(X)+D(Y)±2D(X)D(Y)
⑦ 若 X X X Y Y Y相互独立,则 C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0

4.协方差阵

对于二维变量,我们用一个矩阵来表示两者之间的协方差,即
V = [ D ( X ) C o v ( X , Y ) C o v ( Y , X ) D ( Y ) ] V= \left[ \begin{matrix} D(X) & Cov(X,Y) \\ Cov(Y,X) & D(Y) \end{matrix} \right] V=[D(X)Cov(Y,X)Cov(X,Y)D(Y)]
引申来说,假如有一系列的随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn),我们需要探究这些变量两两之间的协方差,因此n个随机变量就能得到一个n*n的矩阵,记
σ i j = C o v ( X i , X j ) \sigma_{ij}=Cov(X_i,X_j) σij=Cov(Xi,Xj)
则有n阶矩阵
V = [ σ 11 σ 12 ⋯ σ 1 n σ 21 σ 22 ⋯ σ 2 n ⋮ ⋮ ⋮ σ n 1 σ n 2 ⋯ σ n n ] V= \left[ \begin{matrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n}\\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n}\\ \vdots & \vdots& & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn}\\ \end{matrix} \right] V=σ11σ21σn1σ12σ22σn2σ1nσ2nσnn
该矩阵就是随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)的协方差矩阵。
很容易可以得到,协方差矩阵是一个对称矩阵,且对角元元素为各个随机变量的方差。

5.正态分布

若随机变量 X X X的概率密度函数为:
φ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 \varphi(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} φ(x)=2π σ1e2σ2(xμ)2
则称 X X X服从参数为 μ , σ 2 \mu,\sigma^2 μ,σ2的正态分布,写作 X − N ( μ , σ 2 ) X-N(\mu,\sigma^2) XN(μ,σ2)
根据正态分布的特征参数 μ , σ 2 \mu,\sigma^2 μ,σ2,我们能对该正态分布有个直观的印象, μ \mu μ表示正态分布的对称轴,所以叫做位置参数。 σ 2 \sigma^2 σ2表示正态分布的分散程度, σ 2 \sigma^2 σ2越大,正态分布越分散,曲线越“矮胖”,因此 σ 2 \sigma^2 σ2又叫刻度参数。
正态分布有以下几个重要的性质:

① 随机变量 X − N ( μ , σ 2 ) X-N(\mu,\sigma^2) XN(μ,σ2) Y = a + b X Y=a+bX Y=a+bX,则 Y − N ( a + b μ , b 2 σ 2 ) Y-N(a+b\mu,b^2\sigma^2) YN(a+bμ,b2σ2)
② 随机变量 X − N ( μ 1 , σ 1 2 ) , Y − N ( μ 2 , σ 2 2 ) X-N(\mu_1,\sigma_1^2),Y-N(\mu_2,\sigma_2^2) XN(μ1,σ12),YN(μ2,σ22),且两个变量之间相互独立,则 Z = X + Y − ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) Z=X+Y-(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) Z=X+Y(μ1+μ2,σ12+σ22)

6.二维正态分布

若二维随机变量 ( X , Y ) (X,Y) (X,Y)有二维密度函数
f ( x , y ) = 1 2 π σ 1 σ 2 1 − r 2 e { − 1 2 ( 1 − r 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 r ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } f(x,y)= \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1-r^2}}e^{\{- \frac{1}{2(1-r^2)}[\frac{(x-\mu_1)^2}{\sigma_1^2}-2r\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1 \sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}]\}} f(x,y)=2πσ1σ21r2 1e{2(1r2)1[σ12(xμ1)22rσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]}
则称 ( X , Y ) (X,Y) (X,Y)服从二维正态分布,记为
( X , Y ) − N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 ; r ) (X,Y)-N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2;r) (X,Y)N(μ1,μ2,σ12,σ22;r)
其中 μ 1 , μ 2 , σ 1 &gt; 0 , σ 2 &gt; 0 ; ∣ r ∣ &lt; 1 \mu_1,\mu_2,\sigma_1&gt;0,\sigma_2&gt;0;|r|&lt;1 μ1,μ2,σ1>0,σ2>0;r<1为分布参数
二维正态分布有以下性质:

① 二维正态分布的边缘分布为正态分布,且若 ( X , Y ) − N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 ; r ) (X,Y)-N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2;r) (X,Y)N(μ1,μ2,σ12,σ22;r),则
X − N ( μ 1 , σ 1 2 ) , Y − N ( μ 2 , σ 2 2 ) X-N(\mu_1,\sigma_1^2),Y-N(\mu_2,\sigma_2^2) XN(μ1,σ12),YN(μ2,σ22)
② 参数 r r r等于 X X X Y Y Y的相关系数,即 R ( X , Y ) R(X,Y) R(X,Y),即
R ( X , Y ) = C o v ( X ∗ , Y ∗ ) = E ( X ∗ Y ∗ ) = r R(X,Y)=Cov(X^*,Y^*)=E(X^*Y^*)=r R(X,Y)=Cov(X,Y)=E(XY)=r
其中, X ∗ X^* X Y ∗ Y^* Y X X X Y Y Y的标准化随机变量。

r = 0 r=0 r=0时, X X X Y Y Y相互独立。

④ 二维随机变量 ( X , Y ) (X,Y) (X,Y)服从二维正态分布的充要条件是 X X X Y Y Y的任意非零线性组合 Z = a X + b Y Z=aX+bY Z=aX+bY服从一维正态分布,即 Z − N ( E ( Z ) , D ( Z ) ) Z-N(E(Z),D(Z)) ZN(E(Z),D(Z))

7.均方误差

均方误差的定义:
对于总体 X X X的未知参数 θ \theta θ,其估计值为 θ ‾ \overline \theta θ,则称:
M ( θ ‾ ) = E [ ( θ ‾ − θ ) 2 ] M(\overline \theta)=E[(\overline \theta -\theta)^2] M(θ)=E[(θθ)2]
θ ‾ \overline \theta θ关于 θ \theta θ的均方误差。均方误差越小,参数估计越有效。
且均方误差有以下定理: M ( θ ‾ ) = D ( θ ‾ ) + [ E ( θ ‾ ) − θ ] 2 M(\overline \theta)=D(\overline \theta)+[E(\overline \theta)-\theta]^2 M(θ)=D(θ)+[E(θ)θ]2
最小均方误差法是指,一种能够使上述 θ ‾ \overline \theta θ关于 θ \theta θ的均方误差最小的方法。

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值