如何用齿轮法测定光速

本文介绍了伽利略早期尝试测定光速的实验以及法国物理学家斐佐通过高速齿轮系统成功测量光速的过程。斐佐的实验利用齿轮转动和光的传播时间关系,得出光速约为300,000公里每秒。通过对实验装置的精巧设计,物理学家展示了学术理论研究与实验智慧的结合。" 119656790,10856133,JavaScript自定义对象创建与遍历详解,"['JavaScript', '对象创建', '构造函数', '属性遍历']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  之前在看《从一到无穷大:科学中的事实和胰测》(乔治·伽莫夫著)这本书的时候,其中有个章节是讲时间和空间关系的,里面讲到对于光速的测定。下面是原书中人们对于如何测定光速的描述:

  第一次测定光速的尝试是著名的意大利物理学家伽利略(Galileo Galilei)在 17 世纪进行的。他和他的助手在一个黑沉沉的夜晚到了佛罗伦萨郊外的旷野,随身带着两盏有遮光板的灯,彼此离开几英里站定。伽利略在某个时刻打开遮光板,让一束光向助手的方向射去。助手已得到指示,一见到从伽利略那里射来的光,就马上打开自己那块遮光板。既然光线从伽利略那里到达助手,再从助手那里折回来都需要一定时间,那么,从伽利略打开遮光板时起,到看到助手发回的光线,也应有一个时间间隔。实际上,他也确实观察到一个小间隔,但是,当伽利略让助手站到远一倍的地方再做这个实验时,间隔却没有增大。显然,光线走得太快了,走几英里路简直用不了多少时间。至于观察到的那个间隔,事实上是由于伽利略的助手没能在见到光线时立即打开遮光板造成的——这在今天称为反应迟误。

  很显然,在今天看来,伽利略的这种方式是无法测量光速的,事实上由于光速特别快,靠常规的测量距离和人的反应速度来记录时间是不可能的。那还有别的方

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值