如何用齿轮法测定光速

本文介绍了伽利略早期尝试测定光速的实验以及法国物理学家斐佐通过高速齿轮系统成功测量光速的过程。斐佐的实验利用齿轮转动和光的传播时间关系,得出光速约为300,000公里每秒。通过对实验装置的精巧设计,物理学家展示了学术理论研究与实验智慧的结合。" 119656790,10856133,JavaScript自定义对象创建与遍历详解,"['JavaScript', '对象创建', '构造函数', '属性遍历']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  之前在看《从一到无穷大:科学中的事实和胰测》(乔治·伽莫夫著)这本书的时候,其中有个章节是讲时间和空间关系的,里面讲到对于光速的测定。下面是原书中人们对于如何测定光速的描述:

  第一次测定光速的尝试是著名的意大利物理学家伽利略(Galileo Galilei)在 17 世纪进行的。他和他的助手在一个黑沉沉的夜晚到了佛罗伦萨郊外的旷野,随身带着两盏有遮光板的灯,彼此离开几英里站定。伽利略在某个时刻打开遮光板,让一束光向助手的方向射去。助手已得到指示,一见到从伽利略那里射来的光,就马上打开自己那块遮光板。既然光线从伽利略那里到达助手,再从助手那里折回来都需要一定时间,那么,从伽利略打开遮光板时起,到看到助手发回的光线,也应有一个时间间隔。实际上,他也确实观察到一个小间隔,但是,当伽利略让助手站到远一倍的地方再做这个实验时,间隔却没有增大。显然,光线走得太快了,走几英里路简直用不了多少时间。至于观察到的那个间隔,事实上是由于伽利略的助手没能在见到光线时立即打开遮光板造成的——这在今天称为反应迟误。

  很显然,在今天看来,伽利略的这种方式是无法测量光速的,事实上由于光速特别快,靠常规的测量距离和人的反应速度来记录时间是不可能的。那还有别的方

变分模态分解(Variational Mode Decomposition, VMD)是一种强大的非线性、无参数信号处理技术,专门用于复杂非平稳信号的分析与分解。它由Eckart Dietz和Herbert Krim于2011年提出,主要针对传统傅立叶变换在处理非平稳信号时的不足。VMD的核心思想是将复杂信号分解为一系列模态函数(即固有模态函数,IMFs),每个IMF具有独特的频率成分和局部特性。这一过程与小波分析或经验模态分解(EMD)类似,但VMD通过变分优化框架显著提升了分解的稳定性和准确性。 在MATLAB环境中实现VMD,可以帮助我们更好地理解和应用这一技术。其核心算法主要包括以下步骤:首先进行初始化,设定模态数并为每个模态分配初始频率估计;接着采用交替最小二乘法,通过交替最小化残差平方和以及模态频率的离散时间傅立叶变换(DTFT)约束,更新每个模态函数和中心频率;最后通过迭代优化,在每次迭代中优化所有IMF的幅度和相位,直至满足停止条件(如达到预设迭代次数或残差平方和小于阈值)。 MATLAB中的VMD实现通常包括以下部分:数据预处理,如对原始信号进行归一化或去除直流偏置,以简化后续处理;定义VMD结构,设置模态数、迭代次数和约束参数等;VMD算法主体,包含初始化、交替最小二乘法和迭代优化过程;以及后处理,对分解结果进行评估和可视化,例如计算每个模态的频谱特性,绘制IMF的时频分布图。如果提供了一个包含VMD算法的压缩包文件,其中的“VMD”可能是MATLAB代码文件或完整的项目文件夹,可能包含主程序、函数库、示例数据和结果可视化脚本。通过运行这些代码,可以直观地看到VMD如何将复杂信号分解为独立模态,并理解每个模态的物理意义。 VMD在多个领域具有广泛的应用,包括信号处理(如声学、振动、生物医学信号分析)、图像处理(如图像去噪、特征提取)、金融时间序列分析(识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值