关于二项式定理,偶数项和的求解方法。

博客介绍了如何求解二项式定理中偶数项和的问题,特别是在一个古典概型中,计算在k次操作后出现偶数次特定事件概率的方法。通过样例输入和输出展示解题过程,源自2017 ACM-ICPC 亚洲区(西安赛区)网络赛的题目,解答中提出二项式偶数项和的通项公式为:ans=(p^k+(2*q-p)^k)/(2*p^k)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

问题引入

给你一个古典概型问题,总共两个事件,发生A事件的概率为p,则发生B事件的概率为1-p;求k次操作之后,出现偶数次A事件的概率为多少。对于最后的答案要取模1e9+7。
题库链接 <<

样例输入

2
2 1 1
3 1 2

样例输出

500000004
555555560

题目来源

2017 ACM-ICPC 亚洲区(西安赛区)网络赛

题解

  • 很显然,答案是求二项式的偶数项和。
### 回答1: Laplace定理求解行列式的一种常用方法,通过消元代数余子式的计算,可以得到行列式的值。以下以一个具体的例子来说明如何利用Laplace定理求解行列式。 假设有一个3阶方阵A,其元素为a₁₁、a₁₂、a₁₃、a₂₁、a₂₂、a₂₃、a₃₁、a₃₂、a₃₃。我们想要求解该行列式的值Det(A)。 根据Laplace定理,我们先选第一行元素a₁₁作为展开元素,然后计算对应的代数余子式M₁₁。代数余子式的计算方法是将展开元素所在的行列划去,然后计算剩下的元素构成的子矩阵的行列式值。 在这个例子中,a₁₁所在的行列被划去之后,剩下的子矩阵为: M₁₁ = |a₂₂ a₂₃| |a₃₂ a₃₃| 接下来,我们根据子矩阵M₁₁的行列式值来计算代数余子式M₁₁。由于这是一个2阶方阵,可以直接计算行列式的值: Det(M₁₁) = a₂₂ * a₃₃ - a₃₂ * a₂₃ 代数余子式计算完毕后,我们将其与对应的展开元素相乘,得到a₁₁ * Det(M₁₁)。 接下来,我们继续选第一行的第二个元素a₁₂作为展开元素,然后计算对应的代数余子式M₁₂,再将其与展开元素相乘。 依此类推,我们在每一步都计算出代数余子式,并与对应的展开元素相乘,最后将这些结果相加,就得到了整个行列式的值Det(A)。 当然,Laplace定理的计算步骤在实际操作中可能会更复杂,但核心思想仍然是通过代数余子式的计算来求解行列式的值。这种方法求解高阶方阵的行列式时非常实用,但在计算过程中需要注意计算量可能会很大,所以在实际应用中也可以根据具体情况选择其他更高效的求解方法。 ### 回答2: Laplace定理是一种计算行列式的方法。它通过将行列式展开为一系列子行列式的代数,然后递归地计算这些子行列式来求得原行列式的值。以下是一个使用Laplace定理求解行列式的示例问题: 假设有一个3×3的矩阵A,其元素为: A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 我们要求解该矩阵的行列式det(A)。 根据Laplace定理,我们可以选择任意一行或一列,然后计算出每一的代数余子式,并按特定的规律进行运算。在这个例子中,我们选择第一行展开。 第一步,选择第一行的元素1,然后计算其代数余子式。代数余子式是去掉该元素所在的行列之后所形成的2×2的矩阵行列式。 代数余子式M11 = det([[5, 6], [8, 9]]) = 5×9 - 6×8 = -3 第二步,计算出代数余子式之后,我们需要给每一乘以一个特定的符号。在这个例子中,我们根据元素所在的行列数的是否为偶数来确定符号。该元素(1)所在的行(1)列(1)的偶数,因此符号为正。 第三步,将每一的代数余子式符号相乘,并求和得到最终结果。根据Laplace定理,我们可以写出行列式计算公式: det(A) = 1×-3 + 2×M12 - 3×M13 同理,我们可以按照相同的方法计算出M12M13。最终的计算结果为: det(A) = 1×(-3) + 2×6 - 3×3 = -3 + 12 - 9 = 0 因此,这个3×3矩阵A的行列式det(A)等于0。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值