1. HMM 的基本组成要素
一个HMM模型可以用5个元素来描述,包过2个状态集合和3个概率矩阵。其分别为
隐含状态 Q
可观测状态 O
初始状态概率矩阵 π
隐含状态概率转移矩阵 A
观测状态转移概率矩阵/发射概率 B
引入几个符号:
at(i) : 表示到第 t 个观察值 Ot 时处于 状态 i 。
: 表示在 状态 i 下产生观察值的概率。
2. HMM 的三个基本问题
1) Computing Likelihood (计算似然)
给定一个 HMM 观察序列 O,和模型参数λ=(A, B,π),计算似然 P(O|λ)。即怎样有效计算这一观测序列出现的概率
2) Decoding (解码)
给定一个 HMM 观察序列O,和模型参数λ=(A, B, π),找到最优的隐藏序列Q,即怎样寻找满足这种观察序列意义上最优的隐含状态序列 Q
3) Learning (学习)
给定一个HMM 观察序列O,和 HMM 中的一个状态集合,学习 HMM 的 参数 A 、B、π。
即HMM的模型参数λ=(A,B,π)未知,如何求出这3个参数以使观测序列O=O1O2O3…Ot的概率尽可能的大。
3. Computing Likelihood: The Forward Alogrithm (前向算法)
4. Decoding: The Viterbi Alogrithm (维特比算法)
5. Training HMMs: The Forward-Backward Alogrithm (前向后向算法)