an empirical study of learning rates in deep neural networks for speech recognition 总结

本文总结了google论文《ANEMPIRICALSTUDYOFLEARNINGRATESINDEEPNEURALNETWORKSFORSPEECHRECOGNITION》,介绍了最有效的随机梯度下降算法minibatchstochasticgradientdescent,并提出了最优的学习率调度方案AdaDec。
摘要由CSDN通过智能技术生成

结论源自:google 论文《AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL NETWORKS FORSPEECH RECOGNITION 


该基于与现有所有 learning rate schedulding schemes 对比提出 “AdaDec” 


1. 目前,最有效的 随机梯度下降算法是:minibatch stochastic gradient descent 

2. 论文中提出的 “AdaDec” 是 learning rate schedulding schemes 中最优的。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值