图论-01

01-图的基本概念

注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》

图的定义

  • 一个无向图G是一个有序组G=(V(G),E(G))​,​V(G)是顶点集合,E(G)​是边集合

  • :图的顶点个数,即\vert V(G)\vert​,记为​v(G)

  • 相邻:一条边的两个顶点相邻,有公共顶点的两边相邻

  • 重数:连接两个相同顶点的边的条数

  • 重边:重数大于1的边称为重边

  • :两个顶点重合的边叫做环

  • 简单图:无环,无重边的图

  • 图的同构

    • 两个图​G_1=(V_1,E_1),G_2=(V_2,E_2)有如下关系:u_1\leftrightarrow u_2,v_1\leftrightarrow v_2,u1,v1\in V_1,u_2,v_2\in V_2;u_1v_1\in E_1,当且仅当u_2v_2 \in E_2,且u_1v_1的重数与u_2v_2的重数相同​,记作G_1\cong G_2

  • 特殊的图

    • 完全图:任意两个顶点都相邻的简单图,​K_n

    • 二分图:顶点集合可划分为两类,每类中的顶点不相邻

    • 完全二分图:简单图,任意一类的任意一个顶点与另一类内任意顶点相邻,​

    • 星图:​K_{1,n}或​K_{n,1}

    • 零图:有顶点没有边

    • 平凡图:只有一个顶点没有边得图

    • 补图:顶点不变,无边加边,有边去边

  • 定理:若n阶图G是自补的G\cong \overline{G}​,则​n\equiv 0,1(mod 4)


顶点度数

  • 一个顶点v的度数为与它关联的非环变数2倍的环边数的和

  • 图的最小度与最大度为所有顶点度数的最小值和最大值

  • k正则图:对所有v\in V​,有d(v)=k​,完全图和完全二分图都是正则图

  • 定理:任给无向图G,​\sum_{v\in V(G)}deg(v)=2\epsilon(G)

    • 推论:任给图G,G中度数为奇数的顶点个数为偶数

    • 推论:正则图的阶数和度数不可同时为奇数

  • 度序列:一个图G各个顶点的度构成的非负整数组​(d_1,d_2,\cdots,d_n)

  • 图划分:一个n阶简单图G各点的度为​,则分正整数k为n个部分的划分\sum d_i​称为是图划分。此时k必是偶数,且​d_i \leq n-1

  • 定理:设有非负正数组​\Pi=(d_1,d_2,\cdots,d_n),且​\sum_{i=1}^nd_i是个偶数,n-1\geq d_1\geq d_2 \geq\cdots\geq d_n​,它是可图的充要条件是\Pi'=(d_2-1,d_3-1,\cdots,d_{n-1}-1,d_n)​是可图的。

  • 频序列:设​阶图​的各点的度数取​个不同的非负整数d_1,d_2,\cdots,d_s​,又设度为​的点有​个,则有​\sum_{i=1}^sb_i=n。故非负整数组​(b_1,b_2,\cdot,b_s)是​n的一个划分,称为G的频序列


子图与图的运算

  • 子图:​V(H)\subseteq V(G)且​E(H)\subseteq E(G),则称H是G的一个子图,记作​H\subseteq G

  • 真子图H\subseteq G​但H\neq G​,记为​H\subset G

  • 生成子图:满足V(H)=V(G)​的子图H​,简单图G的所有不同生成子图的个数是​2^{|E(G)|}

  • (顶点)导出子图:V'​是V​的非空子集,以V'​为顶点集,以两顶点都在​中的边组成边集,称为G的由V'​导出的子图,若V'=\{v\}​,则把G-\{v\}​简记为​G-v

  • 边导出子图:​E'是E​的非空子集,以​E'为边集,以​E'中边的顶点全体为顶点集,称为G的由​E'导出的子图,若​E'=\{e\},则用​G-e代替​G-\{e\} 

  • 并:​G\cup H=(V(G)\cup V(H),E(G)\cup E(H))

  • 交:​G\cap H=(V(G)\cap V(H),E(G)\cap E(H))

  • 积(许胤龙版,个人认为错):​G\times H=(V',E'),其中V'=V(G)\times V(H)​,E'=\{(u_1,v_1)(u_2,v_2)|u_1=u_2v_1v_2\in E(H)u_1u_2\in E(G)v_1=v_2u_1u_2\in E(G)且​v_1v_2\in E(H)\}

  • 积(张先迪版,个人认为对):​G\times H=(V',E'),其中V'=V(G)\times V(H)​,E'=\{(u_1,v_1)(u_2,v_2)|u_1=u_2v_1v_2\in E(H)u_1u_2\in E(G)v_1=v_2\}

  • 方体:采用张先迪版的积来定义,​方体​递推地定义为​,如果​地两个点二进制表示式只有一处不同,则它们邻接,可应用于编码领域


路径与连通

  • 路径:图G地一条路径​W定义为​W=v_0e_1v_1e_2v_2\cdots e_kv_k,称​W使一条从v_0​到​v_k的一条路径,或一条​(v_0,v_k)路径,顶点​v_0和​v_k分别称为​的起点和终点,整数​k称为​W

  • 行迹:边不重复的路径

  • 轨道:顶点不重复的路径

  • 回路:起点与终点相同的路径

  • :除了起点与终点相同之外,没有相同的顶点回路。

    • 以​k为奇数或偶数,分为奇圈偶圈

  • 连通:若顶点u​与v​之间存在路径,称​u与v​连通

  • 距离:u​与​v之间最短轨道的长称为距离,记为​dist(u,v)

  • 直径:​d(G)=\max\{dist(u,v)|u,v\in V\}

  • 连通图:任意两个顶点间都连通的图

  • 连通片:连通是一个等价关系,故存在一个划分,将​V划分为一些等价类​V_1,V_2,\cdots,V_n,顶点导出子图G[V_i]​称为​G的一个连通片

  • 定理:图G是二分图,当且仅当G中无奇圈

  • 定理:图G是简单图,\delta(G)\geq 2​,则​中含圈(提示:取最长轨道,轨道的起点与终点必还有一边,且该边的端点只能在最长轨道上)

    • 推论:图G是简单图,\delta(G)\geq 3​,则​中含偶圈


最短路径问题

  • 赋权图对​G的每一条边​e,可赋予一个实数w(e)​,称为​的,G连同它边上的权称为赋权图

  • 轨道的权:设​P(u,v)是u,v​之间的一条轨道,则P(u,v)​的权定义为w(p(u,v))=\sum_{e\in E(P(u,v))}w(e) ​

  • 最短路径:设​W(u,v)是​u,v之间的所有轨道构成的集合,则最短路径为一条轨道​P_0(u,v)=min_{P(u,v)\in W(u,v)}w(P(u,v))

  • ​算法:输入一点​,求出该点到其他顶点的最短路径

    • ​表示最短距离,​表示该路径的​的前继结点,​为已被选择的顶点的集合

    • 1、初始化:d(u0)=0,l(u0)=u0,d(u)=∞,l(u)=*​,其中​u∈V(G),且​u≠u0,S=u0​

    • 2、更新数据:对任给​u\in V(G)-S,v\in S,若d(v)+w(uv)<d(u)​,则令​d(u)=d(v)+w(uv),l(u)=v

    • 3、加入新点:选出​u\in V(G)-S,使得​d(u)最小的点,S=S\cup\{u\}

    • 重复2、3步|V(G)|-1​次,结束算法

  • ​标号法:输入一点​,找到从​到​的其他顶点的最短路径

    • t(a):为最短距离,A​为已途径过的顶点集合,​T为所选边集合

    • 1、初始化:​t(a)=0,A={a},T=\varnothing

    • 2、寻找所需边:寻找出​A中的每个顶点到非A​中的顶点权最小的边,令​l(ab)为所寻边的最小权,a\in A,b\notin A

    • 3、更新数据:令​A=A\cup\{b\}T=T\cup\{ab\}​,​t(b)=t(a)+l(ab)

    • 重复2、3步​|V(G)|-1次,结束算法


图的代数表示及其特征

  • 邻接矩阵:图G的邻接矩阵A=(a_{ij})​为一个方阵,vi与​vj中有几条边,则对应aij​的值,否则​aij=0

    • ​A的各行元素之和是​G的各个顶点的度

    • A^n​的第i​行​j列元素​等于由vi到​vj的长度为​n的路径数目

    • 若G​是连通的,对于​i≠j,vi与​vj之间的距离是使A^n​的​a_{ij}^{(n)}\neq 0的最小整数​n

  • 关联矩阵:无环图G的关联矩阵​B=(b_{ij})是一个​|V(G)|\times|E(G)|阶的矩阵,当vi​与ej​关联时,bij=1​,否则bij=0​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值