spss进行时变系数模型分析

我们在临床研究中,经常要研究疾病与生存率的关系,cox回归是用得比较常见的模型之一。Cox 比例风险模型依赖于风险随时间变化的假设(PH假设),意思是协变量对结局的影响随着时间变化是固定的。然而现实中常有不满足于PH假设的情况。如文章:All-cause and cause-specific mortality associated with diabetes in prevalent hemodialysis patients中报道了一个人的糖尿病状态可能会随着时间而变化,尿毒症患者肾功能随着时间变化加重,因此Cox 比例风险模型用在此处不合适,我们可以选用COX回归模型的扩展,一般有两种内在和外部,见下图
在这里插入图片描述
既往我们已经介绍了R语言进行COX时变系数模型,今天来聊下spss进行时变系数模型,继续使用我们的肺癌数据,我们先把数据导入
在这里插入图片描述
我们先来看一下数据(公众号回复:肺癌,可以获得数据),inst机构代码,time以天为单位的生存时间,status:结局变量,1为死亡0为存活,age: 年龄,sex: 男=1 女=2,ph.ecog: 由医师评定的 ECOG 表现评分。 0 = 无症状,1 = 有症状但完全不卧床,2 = 卧床时间 < 50%,3 = 卧床时间 > 50% 但不卧床,4 = 卧床,ph.karno: 由医师评定的 Karnofsky 表现评分(差=0-好=100),pat.karno: 由患者评定的 Karnofsky 性能评分,meal.cal: 用餐时消耗的卡路里,wt.loss: 过去六个月的体重减轻(磅)
在既往文章《R语言进行COX时变系数模型(含时间依存协变量的Cox回归模型)》中,我们已经知道ph.karno这个变量不满足于PH假设,我这里就不在验证,直接用了。SPSS进行时变系数模型主要是要生成一个依时协变量
点击:分析—生存分析—含依时协变量COX
在这里插入图片描述
在图上依次点击:算术—LN----time[T_]
在这里插入图片描述
然后乘以我们的ph.karno变量,这样变量就设置好了
在这里插入图片描述
点击模型,进行设置
在这里插入图片描述
在这里插入图片描述
点击确定得到结果
在这里插入图片描述
表明ph.karno的作用会随着时间的变化而变化,对HR= EXP( - 0.115 + 0.023 * LN(time))
我们带入时间进行转换
在这里插入图片描述
生成了新的指标HR,然后绘制散点图
在这里插入图片描述
添加拟合线
在这里插入图片描述
在这里插入图片描述
得出图形拟合线
在这里插入图片描述
可以看出ph.karno变量随时间变化导致的系数变化,和R做出来的基本差不多,但是得出的信息不如R多,绘图能力也相对较弱。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值