SPSS
文章平均质量分 59
天桥下的卖艺者
4个R包的编写者。发布关于SPSS、R语言、stata等相关科研的文章。今后的方向聚焦于:1.机器学习和深度学习 2.各种模型算法研究 3.各种科研图形绘制 4.R语言编程和R包编写 5.数据挖掘
展开
-
spss进行时变系数模型分析
0 = 无症状,1 = 有症状但完全不卧床,2 = 卧床时间 < 50%,3 = 卧床时间 > 50% 但不卧床,4 = 卧床,ph.karno: 由医师评定的 Karnofsky 表现评分(差=0-好=100),pat.karno: 由患者评定的 Karnofsky 性能评分,meal.cal: 用餐时消耗的卡路里,wt.loss: 过去六个月的体重减轻(磅)可以看出ph.karno变量随时间变化导致的系数变化,和R做出来的基本差不多,但是得出的信息不如R多,绘图能力也相对较弱。我们带入时间进行转换。原创 2022-10-12 09:48:29 · 1088 阅读 · 0 评论 -
手把手教你SPSS计算校正混杂因素后的P for trend
组间趋势(p for trend)在SCI文章中的一个重要指标,把连续变量分组后,计算其组间趋势,可以得出分组后组间变量有无统计学差别。我们既往文章《手把手教你R语言计算校正混杂因素后的P for trend》已经介绍了R语言如何制作p for trend表格,但是R使用代码比较多,对一些初学者不够友好,今天我们通过SPSS来演示一下,我们先来说一下目前计算p for trend的两种情况: 1种是组间距相等的,就把分组变量当成数字直接带入方程计算,2.另外一种是组间距不相等的,通过计算中位数,然后把中转载 2022-06-09 15:23:30 · 6421 阅读 · 0 评论 -
SPSS进行多元线性回归
多元线性回归研究的是因变量为连续变量,与多个自变量的相关关系的研究。由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。能做多元线性回归的软件很多,SPSS因为简单上手,不需要敲代码更受欢迎。今天我们今天通过SPSS演示多元线性回归操作。导入的我们的数据这是一个关于核电站建设的数据,(公众号回复:核电站数据),可以获得该数据。Cost:成分,我们的结局变量。Date:施工时间,ct是否存在冷却塔,二分类变量原创 2022-06-01 14:37:34 · 31410 阅读 · 1 评论 -
使用spss拆分文件功能轻松绘制论文数据基线表(sci表一)
我们的论文分析时经常需要进行一个一般人群的数据基线表的统计分析,一般来说就是SCI论文中的表一,如下图表中Q1-Q4为4个亚组,分别描述了每个亚组的均值和标准差,分类变量使用计数和百分比表示,最后还得出组间比较的P值,既往我们已经介绍了使用R语言多个R包绘制基线表,今天我们来介绍一下使用spss拆分文件功能轻松绘制如上图论文数据基线表。继续使用我们的早产数据,我们先导入数据这是一个关于早产低体重儿的数据(公众号回复:早产数据,可以获得该数据),低于2500g被认为是低体重儿。数据解释如下:low原创 2022-05-09 14:56:52 · 14529 阅读 · 3 评论 -
利用SPSS可视化分箱轻松给数据进行等分分组
我们在临床研究中,经常需要对数据进行转换,有时需要把连续变量转换成分类变量,然后观察分类变量的之间关系。例如下图按照百分位把数据分成了5组我们今天通过SPSS数据可视化分箱来演示怎么进行连续数据等分分组,继续使用我们的乳腺癌数据(公众号回复:乳腺癌可以获得该数据),我们先导入数据age表示年龄,pathsize表示病理肿瘤大小(厘米),lnpos表示腋窝淋巴结阳性,histgrad表示病理组织学等级,er表示雌激素受体状态,pr表示孕激素受体状态,status结局事件是否死亡,pathscat表示病原创 2022-04-16 18:23:36 · 11097 阅读 · 3 评论 -
SPSS进行倾向评分逆概率加权(IPTW)
基于 PS (倾向评分)的IPTW 法首先由Rosenbaum作为一种以模型为基础的直接标准化法提出,属于边际结构模型。简单来说,就是把许多协变量和混杂因素打包成一个概率并进行加权,这样的话,我只用计算它的权重就可以了,方便了许多。那么,如何将多个协变量的影响用一个倾向评分值来表示呢? 即如何估计倾向评分值呢? 根据 Rosen-baum 和 Rubin 的定义:倾向评分值为在给定一组协变量(X i )条件下,研究对象 i(i =1,2,…N)被分配到某处理组或接受某暴露因素(Z i =1)的条件概率。理论原创 2022-02-09 10:06:12 · 9563 阅读 · 14 评论 -
SPSS主成分分析
在科学研究中,经常需要从同一个体(或观测单位)上观测多个指标,这些指标从不同方面反映个体的性质。主成分分析方法为无监督机器学习的一种方法,是通过线性降维将多个定量指标转换为少数几个综合指标的一种统计分析方法。假设对于某个问题的研究涉及到P个指标,分别用Xl,X2….XP,表示,这个指标构成的P维随机向量设为X1-XP,对X进行线性变换,可以通过线性组合的方式形成新的综合变量这里用C表示:新的综合变量和原来变量之间的关系可以用下面的公式表示:上式中的线性组合可以是任意的,由不同的线性变换得到的综合变量原创 2022-01-26 09:01:49 · 5067 阅读 · 0 评论 -
SPSS计算患者的生存率
生存率是我们生存分析的重要结果。后台有粉丝问我如何使用SPSS计算患者3年或5年的生存率,SPSS计算患者生存率还是比较简单的,有两种方法可以计算,我们一一来演示。继续使用我们的乳腺癌数据(公众号回复:乳腺癌可以获得数据),首先把数据导入我们来看一下数据age表示年龄,pathsize表示病理肿瘤大小(厘米),lnpos表示腋窝淋巴结阳性,histgrad表示病理组织学等级,er表示雌激素受体状态,pr表示孕激素受体状态,status结局事件是否死亡,pathscat表示病理肿瘤大小类别(分组变量),原创 2021-09-15 14:35:19 · 17164 阅读 · 0 评论 -
SPSS联合Excel进行logistic回归亚组交互效应(交互作用)的可视化分析
交互作用效应(p for Interaction)在SCI文章中可以算是一个必杀技,几乎在高分的SCI中必出现,因为把人群分为亚组后再进行统计可以增强文章结果的可靠性,进行可视化后可以清晰的表明变量之间的关系。不仅如此,交互作用还可以使用来进行数据挖掘。在既往文章中,我们已经介绍了怎么使用R语言对交互作用进行可视化分析(见下图)后台有粉丝问我能不能用SPSS,不用代码,直接界面操作绘制logistic回归交互项(交互作用)的可视化分析图。SPSS可以进行计算出数据,但是绘图能力不行,多变量的数据拟合图不原创 2021-07-15 10:01:20 · 11987 阅读 · 8 评论 -
SPSS效度分析
对于问卷调查,我们必须要进行信度分析和效度分析。信度分析就是问卷可信度的意思,前面我们已经讲解了SPSS信度分析。今天来说下效度分析,效度分析就是问卷各指标有效度的分析,代表各指标的有效度评价,能效性的评估,这对于我们筛选出有用的指标非常有效。本次使用的数据来自网络分享的一份学校满意度调查数据,主要是从各方面来评价一个学校的满意度,有很多个维度,采用的是李克特5度量表,满意到不满意分为5个等级。我们采用的是探索因子分析(用于还没划分维度的分析)。点击分析———降维————因子把需要比较的选项选入原创 2021-04-19 11:13:01 · 26659 阅读 · 0 评论 -
SPSS问卷信度分析
问卷调查中信度分析是一个必不可少的指标,代表你这问卷的可信度、可靠度。最常用于问卷类量表分析,在改良的评分表中也经常使用到。主要的原理是对一个对象进行重复、多次的测量,如果结果每次都很接近,则认为信度可靠,其中的最常用的就是Cronbach α信度。今天我们使用的是SPSS自带的一个某商品的销售情况调查表数据,来演示Cronbach α信度分析,先导入数据如下图所示:数据很多,前面和一般的数据分析结构一样,我们主要看的是后面6个指标,Price satisfaction价格满意度,Variety s.原创 2021-03-02 19:32:41 · 9942 阅读 · 0 评论 -
手把手教你SPSS进行ROC曲线分析
ROC曲线也叫受试者工作曲线,原来用在军事雷达中,后面广泛应用于医学统计中。ROC曲线是根据一系列不同的二分类方式(分界值或决定阈),以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线。ROC曲线主要应用于二分类结局,比如是否死亡,疾病诊断,肿瘤复发等等,可以用于自变量为连续变量的截点判定。可以做ROC曲线的软件很多,如SPSS,R语言,Stata, SAS等等,其中SPSS非常简单,适合完全没有基础的初学者,今天我们就来使用SPSS作出一个符合论文发表的ROC曲线。首先打开SP原创 2021-01-01 10:58:55 · 87497 阅读 · 19 评论 -
使用SPSS对数据异常值进行探索分析
我们在进行临床分析数据的时候,有时候常遇到临床数据结果和临床常识不一样的时候。比如按照临床经验,下图B指标应该随着A指标升高而不断升高的,但是在A指标在115到126左右这段A指标升高,B指标反而下降了,为什么会这样呢?我们可以把这段指标的数据提出来,和其他的数据进行比较,得出差异,进行分析使用SPSS把数据打开然后点击转换,编码为不同的变量把A指标选入,选择范围这个选项A指标中115-126这段,把它转换成1,其他指标转换成2这样就得到了新的分类指标A1我们可以通过单因素方差分析和原创 2020-12-09 14:11:56 · 10401 阅读 · 0 评论 -
手把手教你使用SPSS做出亚组分析的交互作用效应(p for Interaction)
交互作用效应(p for Interaction)在SCI文章中可以算是一个必杀技,几乎在高分的SCI中必出现,因为把人群分为亚组后再进行统计可以增强文章结果的可靠性,下图就是一片20分的文章,做了交互作用分析很多人不知道怎么做出交互作用的P值,其实很简单,我们今天通过SPSS来演示怎么做出交互作用的P值首先用SPSS打开我们既往的乳腺癌的数据假如我们研究的的是pr(孕激素受体状态)和死亡的关系,我们想知道ln_yesno(是否淋巴结转移)和pr是否产生交互作用。首先打开COX回归界面填入时间原创 2020-11-01 12:59:55 · 56413 阅读 · 7 评论 -
手把手教你用SPSS对插补后的数据进行COX回归
COX回归在统计学中有着重要的作用,多数用在肿瘤、血液病等生存分析的内容中,我们在前面内容手把手教你使用R语言建立COX回归后画出列线图(Nomogram),已经对COX回归进行了概述,这里就不在多说了,上一节我们已经讲到怎么利用SPSS对缺失数据进行多重插补,今天我们讲一下怎么用SPSS对插补后的数据进行COX回归分析。首先打开我们上一章节的数据,1套原始数据和5套插补数据共6套数据然后依次点击分析----生存分析—COX回归把time选入时间,status选入状态,其他指标选入协变量,Imput原创 2020-09-22 10:51:49 · 6712 阅读 · 3 评论 -
手把手教你使用SPSS对数据缺失值进行多重插补
我们在临床研究中常会遇到数据缺失这种尴尬情况,数据缺失得多了对我们的研究结果造成了影响,多重插补(MI,Multiple imputation)是用于填补复杂数据缺失值的一种方法。近年来出现在不少高质量SCI论文中。今天我们来演示一下SPSS缺失数据多重插补功能,首先打开数据表格,可以看到有很多缺失项我们依次点击分析—多重插补—插补缺失数据值把要插补的变量全部选入模型中,一般默认插补5个数据集,SPSS会新生成一个数据集,我们可以给它随便起个名字,这里就叫数据集2点击确定,新生数据集就生成了,原创 2020-09-19 11:23:16 · 55941 阅读 · 21 评论 -
利用SPSS对数据转置和数据整理
今天我们来演示一个SPSS非常实用的数据转置并进行数据整理的功能,我们新手在录入数据的时候常常对数据录入的格式没有了解清楚,横向录入数据的情况并不少见,等到录完以后才发现格式不对,统计软件识别不了,非常难办,如下图所示,这种格式统计软件是识别不了的应转换成如下格式如果发现错误再重头录制非常辛苦,耗时耗力。今天我们来演示一下怎么使用SPSS把数据格式进行转换,先把录错格式的数据拷贝入SPSS,如下图录入数据中,统计软件不需要录入姓名的,我们把姓名删掉然后依次点击数据—转置把所有的选项放入变原创 2020-09-14 11:14:25 · 3798 阅读 · 0 评论 -
利用SPSS进行PSM倾向性评分配对
倾向评分匹配(Propensity Score Matching,简称PSM)是一种统计学方法,用于处理观察研究(Observational Study)的数据,在SCI文章中应用非常广泛。在观察研究中,由于种种原因,数据偏差(bias)和混杂变量(confounding variable)较多,倾向评分匹配的方法正是为了减少这些偏差和混杂变量的影响,以便对实验组和对照组进行更合理的比较。为什么需要做倾向评分匹配?我们知道RCT的证据力度高,是因为对患者进行了严格的筛选。我们的回顾性研究都是过去的数据,原创 2020-09-10 20:12:44 · 20781 阅读 · 10 评论 -
手把手教你用SPSS做出二元logistic回归分析
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。二元logistic回归在临床应用非常广泛,常用于结果是二分类变量的多因素分析,比如:疾病是否发生、阳性或阴性、生存或死亡这类的结果。例如:今天我们来完整演示一下,这类文章的数据是怎么做出来的。我们有一个肺炎和炎症指标的数据,如下图所示:fy为是否发生肺炎,t为痰液图片是否阳性,xs为胸腔积液的量,其他为炎症指原创 2020-09-09 09:06:17 · 70623 阅读 · 8 评论 -
利用SPSS进行person相关分析及散点图绘制
利用SPSS进行person相关分析及散点图绘制 德哥SCI医学论文和国内核心论文中,我们会经常对两个变量进行相关性比较,使用person相关分析及散点图绘制可以很好的进行表达相关关系,有些时候审稿人也会要求你做person系数及散点图,因此这是一个必不可少的技能。这个图是怎么做出来的呢,今天我们演示下怎么做出散点图并求出person系数。假设我...原创 2020-08-31 20:20:30 · 56123 阅读 · 0 评论 -
利用SPSS对变量进行分组转换结合方差(U)检验轻松做出SCI表一
利用SPSS对变量进行分组转换结合方差(U)检验轻松做出SCI表一SCI里常见这样的表格一,表明人群基线资料,通常都是分段表示,可这样的表格是怎么做出来的呢?今天我们来实际做一下:假设我们有一组肺炎和炎症指标的数据,fy为是否肺炎,age为年龄,其他是炎症指标,如下:想知道不同年龄层段炎症指标有没有关系,比如老人是不是比成人炎症反应更加重?数据里给的是实际年龄,我们要把年龄进行转换,分成青少年(0-20岁)、成年(21-60岁)、和老年(>60岁)。我们先把数据录入SPSS点转换,然后选择重原创 2020-08-26 16:47:11 · 2774 阅读 · 2 评论 -
利用SPSS随机数轻松实现随机分组
利用SPSS随机数轻松实现随机分组临床研究中常需要对研究对象进行分组,分组要求客观、随机。所以我们经常要用到随机分组方法。随机分组方法有信封法、随机数字表法,都不方便,今天我们利用SPSS产生的随机数可以轻松实现随机分组。假如我们打算收集72例患者,随机分成3组,首先我们在SPSS对患者进行自上而下的编号1-72号。建立新变量组R打开SPSS随机数字生成器,设定固定值,我们这里设置为5(也可以随便设置一个)点击确定后。接下来使用计算变量功能利用函数组随机数功能,并且使用Rv.Uni原创 2020-08-11 15:17:39 · 15415 阅读 · 2 评论