小球下落

小球下落 (二叉树的应用)


有一棵二叉树,最大深度为D,且所有叶子的深度都相同。所有结点从上到下从左到右编号为1,2,3,...,2^D-1。在结点1处放一个小球,它会往下落。每个内结点上都有一个开关,初始全部关闭,当每次有小球落到一个开关上时,它的状态都会改变。当小球到达一个内结点时,如果该结点上的开关关闭,则往左走,否者往右走,直到走到叶子结点。
一些小球从结点1处依次开始下落,最后一个小球将会落到哪里呢?输入叶子深度D和小球个数I,输出第I个小球最后所在的叶子编号。假设I不超过整棵树的叶子个数(即2^(D-1))。D<=20。输入最多包含1000组数据。
样例输入:
4 2
3 4
10 1
2 2
8 128
16 12345
样例输出:
12
7
512
3
255
36358

[分析]
不难发现,对于一个结点k,它的左儿子、右儿子的编号分别是2k和2k+1 。所以方法[1] 可以模拟程序输出结果。但是这种方法的缺点是:运算量太大 ,由于小球个数I可以高达2^(D-1),每个测试数据下落总层数可能会高达2^19*(20-1)=9961472。所以效率比较低。

考虑方法[2] ,每个小球都会落在根结点上,因此前两个小球必然是一个在左子树,一个在右子树。一般地,只需看小球的编号的奇偶性,就能知道它是最终在哪棵子树中 。对于那些落入根结点左子树的小球来说,只需知道该小球是第几个落在根的左子树里的,就可以知道它下一步往左还是往右了。以此类推,直到小球落到叶子上。当I是奇数时,它是往左走的第(I+1)/2个小球;当I是偶数时,它是往右走的第I/2个小球。这样,可以直接模拟最后一个小球的路线 。这样,程序的运算量就与小球编号无关 了,而且节省了一个巨大的数组 tree,程序的效率很高。

[1] 通过模拟程序输出结果。

[2]  根据规律输出结果。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值