thresholded-Landweber

动机

在研究MRI重建时,需要处理 ||Axb||2F 这样的式子,但是A其实是个算子,包括下采样,NUFFT和coil矩阵,总之非常复杂,希望在处理后面约束项的时候不要A在里面,那么怎么处理呢?
基本思想来自于SPARSE SIGNAL RESTORATION和Learning the Sparsity Basis in Low-rank plus Sparse Model for Dynamic MRI Reconstruction这两篇论文。下面先介绍基础。

MM算法

我们想 min J(x) ,但是直接优化并不容易。这时我们假想有这么一个序列{ xk },使得 J(xk+1)<J(xk) ,那么怎么来找这个序列呢?MM方法就是先找个新函数作为 J(x) 的上界,然后最小化这个上界来得到 xk+1 (好像EM算法也是这个思想)。参见下图。
图片来源SPARSE SIGNAL RESTORATION

Landwebber 迭代

先考察问题 J(x)=||yHx||22 ,如果直接求解会得到 x=(HH)1Hy ,这里求逆会带来很多的问题,顺便说一句,貌似加入松弛变量可以解决不可逆的问题,不过即使如此,运算量也可能比较大。
那么就可以采用MM算法避免直接求解线性方程组。我们找到上界函数 G(x)=J(x)+nonnegativefunction of x ;同时在x_{k}这个点上,G(x)=J(x),因此一个通常的选择是:
Gk(x)=||yHx||22+(xxk)(αHH)(xxk).
为了确保非负性, α>=maxeig(HH) .
然后我们最小化G(x)。发现 x=xk+1αH(yHxk)

ISTA–landweber的应用

这里就不介绍1范数的求解了和ISTA推导了,我们可以直接给出这样的过程:
对于求解 J(x)=||yHx||22+λ||x||1 这样的函数,注意到
Gk(x)=α||xk+1αH(yHxk)x||22+K ,K是与x无关的量。
那么我们可以直接化成求解:
||xk+1αH(yHxk)x||22+λα||x||1 ,采用softsholding,就是
xk+1=soft(xk+1αH(yHxk),λ2α)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值