动机
在研究MRI重建时,需要处理
||Ax−b||2F
这样的式子,但是A其实是个算子,包括下采样,NUFFT和coil矩阵,总之非常复杂,希望在处理后面约束项的时候不要A在里面,那么怎么处理呢?
基本思想来自于SPARSE SIGNAL RESTORATION和Learning the Sparsity Basis in Low-rank plus Sparse Model for Dynamic MRI Reconstruction这两篇论文。下面先介绍基础。
MM算法
我们想
min J(x)
,但是直接优化并不容易。这时我们假想有这么一个序列{
xk
},使得
J(xk+1)<J(xk)
,那么怎么来找这个序列呢?MM方法就是先找个新函数作为
J(x)
的上界,然后最小化这个上界来得到
xk+1
(好像EM算法也是这个思想)。参见下图。
Landwebber 迭代
先考察问题
J(x)=||y−Hx||22
,如果直接求解会得到
x=(H′H)−1H′y
,这里求逆会带来很多的问题,顺便说一句,貌似加入松弛变量可以解决不可逆的问题,不过即使如此,运算量也可能比较大。
那么就可以采用MM算法避免直接求解线性方程组。我们找到上界函数
G(x)=J(x)+non−negativefunction of x
;同时在x_{k}这个点上,G(x)=J(x),因此一个通常的选择是:
Gk(x)=||y−Hx||22+(x−xk)′(α−H′H)(x−xk).
为了确保非负性,
α>=maxeig(H′H)
.
然后我们最小化G(x)。发现
x=xk+1αH′(y−Hxk)
ISTA–landweber的应用
这里就不介绍1范数的求解了和ISTA推导了,我们可以直接给出这样的过程:
对于求解
J(x)=||y−Hx||22+λ||x||1
这样的函数,注意到
Gk(x)=α||xk+1αH′(y−Hxk)−x||22+K
,K是与x无关的量。
那么我们可以直接化成求解:
||xk+1αH′(y−Hxk)−x||22+λα||x||1
,采用softsholding,就是
xk+1=soft(xk+1αH′(y−Hxk),λ2α)