论文阅读笔记:An End-to-End Approach for Document-level Event Factuality Identification in Chinese

该博客介绍了针对篇章级可信度识别的端到端模型,该模型结合了事件提及检测和事实性识别两个任务。模型利用BERT对问题-句子对进行编码,通过BiLSTM捕获句子间交互,再通过门控机制融合信息,最终确定篇章的可信度。实验表明,多任务框架在事件检测和事实性识别上表现有效,强调了句子上下文理解的重要性。
摘要由CSDN通过智能技术生成

目录

 

模型结构

Event Mention Detection

Event Factuality Identification

实验

语料库

实验中一些必要的参数

实验结果


模型结构

文本主要提出了一个用于识别篇章级可信度的端到端的模型,即不用任何其它的特征,仅需要一个最核心的事件和整篇文本来识别篇章级的可信度。

文章中的模型如下所示:

首先对于一个文档D,它的表示为D={S1, S2, …, Sn} ,其中Si表示文章中的第几句话,模型的输入层,Q是根据篇章的核心事件提出的一个问题,如果事件用E来表示,那么问题Q就可以表述为“事件 E 的事实性值是什么”,举个具体的例子,比如篇章中最核心的事件E:United States reach an agreement with Mexico,那么Q就组织成"What is the factuality value of the event <United States reach an agreement with Mexico?>"。然后这个问题和篇章中的每一句话都组成一个问题-句子对,输入到BERT中,用BERT去揭示问题和句子之间的相关性。通俗的理解下就是:我们不知道文中哪些句子与篇章的核心事件有关,所以每个句子都给它提出一个我们组织好的问题,用模型去揭示哪一句话是跟我们问题的相关性比较大。

这里的BERT模型只用了它的编码器encoder部分,并使用最后一层的隐藏层来作为一个问题-句子对的最终表示,每一个问题-句子对用Oi表示,那么由于有n个问题-句子对,输入通过BERT得到的输出记为R,R的形状为:,n是文档D中句子的数量,d是隐藏状态Oi的形状。(文中说每行是一个Oi,我觉得按照d的形状的话,每列是一个Oi才对。)

得到R后,模型有两个部分的任务,一个是Event Mention Detection,也就是捕捉问题-句子对的关系的任务,也就是对句子进行分类,是核心事件相关的句子为一类,不是的为一类,也就是一个二分类的任务;另一个任务是Event Factuality Identification,也就是最终的任务,识别篇章级别的可信度。

Event Mention Detection

这个部分将BERT的输出R作为输入,将R通过一个BiLSTM,原本R的形状是d*n,(方便理解,可以将R看成一个句子,句子中的词语的数量是n,embedding size是d),那么通过BiLSTM后,得到输出N0,(没有取最后一个hidden state,取了所有“词”的hidden state,为什么不像最常见的做法,取LSTM最后一层的隐藏状态呢,因为这里的词代表的是每一个原文中的句子,每个句子都是要分类的)。至于为什么要用LSTM呢,原文的解释是这样的:使用简单的BiLSTM来捕获文档中句子序列之间的交互,因为事件提及(即事件句子)的上下文有助于识别事件句。即旁边的句子有助于识别当前句子是不是事件句。

得到N0后,通过softmax进行分类,其中,损失函数使用交叉熵损失。

最终得到的P0的形状为:n*2,即每个句子都有一个分类,这个分类即是否是事件句的分类。

Event Factuality Identification

这一部分的输入也有一个BERT的输出R,论文中指出:“我们认为,整个文档表示形式R是对这些事件提及的有益补充”,也就说除了N0外,R也是一个重要的特征,来识别篇章级的可信度。

对于N0使用sigmoid激活函数,将N0转化为N1,N1的形状跟N0是一样的。然后文中提出使用门控机制(gating mechanism),将N1用作门控单元,通过将N1与R乘以1来控制数据流:

T1的形状和R的形状一样(为什么?上面的符号是张量积),,T1又通过一个BiLSTM,这次通过BiLSTM取的应该是最后一层的hidden state(文中这里太过于简略了,压根没说,这是我自己揣测的),记为M1,M1的形状应该是d1*1(文中公式出现了M1,但是论文中的图却没有出现),这个向量编码了篇章所有句子的信息,最后我们要用这个向量进行分类:

其中,(为什么这里会出现b0,不应该是b1吗)。d1是BiLTSM隐藏层的神经元数量。(文中忽略了PS-和Uu的识别)

 

实验

语料库

实验中一些必要的参数

1.十折交叉验证 

2. Adam优化算法 

3.嵌入层,编码器层和隐藏层中引入了Dropout机制,Dropout比率为0.5。

4.d0和d1相同,均为50

5.Transformer块的数量为12,隐藏层的大小为768,多注意头的数量为12,预训练模型的参数总数为110M

 

实验结果

baseline:

EFANN:使用本文中的事件句检测方法来首先识别事件句,然后将这些事件句提供给钱忠师兄模型中提出的对抗性神经网络,以预测事件的真实性。
 

BERT_Pipeline:此模型首先检测事件句,然后根据提取的事件提及识别篇章级可信度。这两个子任务都使用预训练的BERT来学习功能,并使用Softmax来预测事件的真实性。

BERT_Doc:此模型忽略事件句检测的阶段。它首先使用BERT对整个文档和问题进行编码,然后使用Softmax预测事件的事实性。

 

表格三的结果证明将两个子任务结合在一起,多任务框架对于事件句检测和事件性识别是有效的。在多任务框架中,下游任务事件的事实性识别可以进一步帮助上游任务事件句检测,以提高其性能。

还有补充的一点就是,有时候光靠事件句来识别篇章级的可信度,会有很难识别的情况,比如下面的文章:三个事件句的事实性均不同,这样就导致篇章级别的可信度很难识别,但是恰好最后一句话是揭示篇章级的可信度的,所以对于事件句周围句子的理解也很重要。

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值