论文笔记--GPT-4 Technical Report

GPT-4是OpenAI发布的多模态大模型,展示出在文本和图像理解上的强大能力,特别是在考试和代码生成任务上的优秀表现。然而,模型也存在知识更新滞后、推理错误和易受误导等问题。通过RLHF和RBRMs提高对人类意图的对齐,增强了安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 报告简介

  • 标题:GPT-4 Technical Report
  • 作者:OpenAI
  • 日期:2023
  • 期刊:arxiv preprint

2. 报告概括

  本文是OpenAI发布的GPT-4的技术报告,主要针对GPT-4的能力、局限和风险性等方面进行测评。GPT-4是个多模态模型,支持文本和图像格式的输入。但OpenAI并没有公布GPT-4实现的技术细节,仅在一些场景给出了推理时的prompt,可供用户参考。

3 报告重点内容

3.1 Predictable Scaling

  首先,文章对GPT-4的整体损失进行了分析。根据最近的研究成果,模型的损失和模型的计算量(compute)满足幂律关系。为了判断GPT-4是否满足该关系,文章首先用和GPT-4相同的训练方法(未交代具体方法)训练参数/计算量更小的模型,得到一组compute VS loss的数据对(如下图中的实心黑点),再用这些数据拟合一个幂律模型: L = a C b + c L=aC^b + c L=aCb+c(下图中的虚线)。可以看到GPT-4(绿色原点)恰好在该幂律模型上,说明GPT-4的loss是可以被精准预测的。
  PS:查了很多资料,才明白x轴的单位分别是

  • 1 p = 1 p i c o = 1 0 − 12 1p=1pico = 10^{-12} 1p=1pico=1012
  • 1
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值