参数W是神经网络中的重要参数
一般为随机数:w = tf.Variable(生成方式)
生产方式有:
-
正态分布的随机数
正态分布指的是大部分数据值相近集中的随机数们
tf.random_normal(shape(), stddev, mean, seed)shape(), 指定维度
例如:shape(1,2)表示一行2列的矩阵:[[1,2]]
shape(2,)表示两个元素的一维数组stddev,标准差,正态分布的广度,值越大,生成的正态分布的随机数取值范围越广
mean, 均值,正态分布的中心点,数据大多集中在这一点
seed 随机数种子,这个值若为定值,则每次调用这个函数生成的随机数都是一样的
-
去掉过大偏离点的正态分布随机数
tf.truncated_normal() -
均匀分布的随机数
tf.random_uniform() -
全0数组
tf.zeros() -
全1数组
tf.ones() -
定值数组
tf.fill()
7.tf.constant()